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We enumerate the number of RNA contact structures according to their genus, i.e., the topological
character of their pseudoknots. By using a recently proposed matrix model formulation for the RNA
folding problem, we obtain exact results for the simple case of an RNA molecule with an infinitely flexible
backbone, in which any arbitrary pair of bases is allowed. We analyze the distribution of the genus of
pseudoknots as a function of the total number of nucleotides along the phosphate-sugar backbone.
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The prediction of foldings of single-stranded nucleic
acids (like RNA molecules) is still a major open problem
of molecular biology [1,2]. Several methods are available
for the prediction and description of the folding process in
various conditions. Most of them are statistical models
(both at equilibrium and out of equilibrium) that have roots
in combinatorial problems. Although these models are
much simpler than the energy based ones (and thus cannot
provide thermodynamical predictions), they often provide
exact analytical solutions that give important insights on
the phase-space structure and the entropy. For those rea-
sons the combinatorics of contact structures of biopoly-
mers has received great attention over the past 30 years [3].
In the case of RNA folding, a lot of attention has been paid
to the combinatorics of contact structures that are planar
(see, e.g., [4] or [5] and references therein), but very little is
known about nonplanar structures (i.e., structures with
pseudoknots). In this Letter, we explore a very schematic
model for RNA folding which allows for the exact enu-
meration of all contact structures with fixed genus. This
model, which is based on a simpler one that was proposed
earlier in [6—9], may be relevant for studying the behavior
of nonplanar contributions. The partition function is that of
a chain of L nucleotides in three dimensions:

L
z = [[]rustehzetie), ()
k=1

where r; is the position vector in three dimensions of the
kth base, and f({r}) is a function which takes into account
the geometry, the stiffness, and the sterical constraints of
the chain. The folding of the chain is caused by the hydro-
gen bonds that the bases can form. Since the hydrogen
bonds saturate, a base can interact with only one other base
at a time. The contribution from such interactions to the
partition function is described by Z; ({r}):

Z,({rh) =1+ Zvij(rij) + Z Vi) Vig(eg) + -+,

i<j i<j<k<lI

where V;(r;;) = exp[ — Be;;v;;(r;;)] is the Boltzmann fac-
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tor associated with the energy &;; of making a bond be-
tween the ith and the jth bases at distance r;;. In this
expression, 8 = 1/T denotes the inverse temperature,
and v;;(r;;) represents the (short range) space dependent
part of the interaction. To further simplify the model, we
assume that the chain is infinitely flexible and we neglect
all sterical constraints, so that any pairing of bases is
assumed to be feasible. Therefore, we can neglect all
spatial degrees of freedom and write

Z=27, =1+ Vit > ViVyt+-,

i<j i<j<k<l

where now V;; = exp(—Bg;;). As shown in [6], each term
in Z; can be represented graphically by a suitable arc
diagram. In such a representation the nucleotides are dots
on an oriented horizontal line (which represents the RNA
sugar backbone from the 5 end to the 3’ end), and each
base pair is drawn as an arc—above that line—between
the two interacting bases. In real RNA, not all pairs of
nucleotides can interact. For instance, two bases which are
too close to each other along the backbone (say, within a
distance of 4 bases) cannot form a hydrogen bond since the
backbone is not flexible enough. Moreover, for an RNA
molecule one also usually assumes that only standard
Watson-Crick pairs (A-U, C-G) and wobble pairs (G-U)
are possible. These constraints greatly increase the diffi-
culty of enumerating all possible structures that are al-
lowed. Among the set of all possible structures, one de-
fines secondary structures of an RNA molecule as all struc-
tures that are represented by planar arc diagrams (no cross-
ing of arcs). When the diagrams are nonplanar, one says
that the RNA molecule contains one or more pseudoknots.
Structures with pseudoknots can be classified according to
the topological character of the corresponding arc diagram
[9]. Such a classification can be made more explicit di-
rectly in Eq. (2), as explained in [6]. The main idea of [6] is
to consider the following integral over matrices:
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Here ¢;,i = 1, ..., L,are L independent N X N Hermitian
matrices (¢;” = ¢;) and ]’[,LZI(I + ¢;) is the ordered ma-
trix product (1 + ¢;)(1 + ¢,) - (1 + ¢, ). The normal-
ization factor is

L 7(N/2)Z(Vil)ij"(¢i‘pj)
am = [[Tdee 7 L@
k=1

and V is the L X L symmetric matrix with elements V;;.
The integral in Eq. (3) can be evaluated by using the Wick
theorem. The result is a function of N which can be written
as an asymptotic series at large N:

1
ZIN) =1+>V+ ViiViu + 3 > VaVi

i< i<j<k<l i<j<k<l

SRR (5)

The relation with the expansion in Eq. (2) is obvious. The
two series coincide for N = 1, whereas for N > 1 the
series in Eq. (5) contains topological information. All the
planar structures are given by the O(1) term of Eq. (5) and
higher-order terms in 1/N? correspond to RNA secondary
structures with pseudoknots. The classification of pseudo-
knots induced by this expansion is reviewed in [9].

The most challenging problem in the RNA folding pre-
diction is to find the structure with the lowest free energy. If
one restricts the search to the set of secondary structures
without pseudoknots, several fast algorithms are available
[10]. However, when one includes the possibility of having
pseudoknots, the problem is still open. An even simpler
fundamental problem, namely, the exact combinatorics of
RNA structures with any pseudoknots, is unsolved. Results
about the combinatorics of RNA secondary structures
without pseudoknots or with very special classes of pseu-
doknots are available (e.g., [4,5]), but the general case is
still lacking. In this Letter, we address precisely the prob-
lem of enumerating all secondary structures with
pseudoknots.

In order to get exact results, we make a few additional
simplifications. We assume that any possible pairing be-
tween nucleotides is allowed (independently of the type of
nucleotides and from their distance along the chain) and
that all the pairings may occur with the same probability. In
other words, we assume that the matrix V;; has all entries
equal with v > 0, i.e.,

v+ta v v
+ oo
v=| T T e
v v v+a

The real number a has been added in order for V to be
definite positive. Of course, this addition is purely formal
since Z; (N) does not depend on a, as one can easily see
from Eq. (5). In fact, no diagonal term V;; appears, as there
are no self-interaction diagrams. Even though the combi-
natorial problem in Eq. (2) is now greatly simplified, it still
keeps a lot of its topological interest. In fact, by means of
the matrix integral in Eq. (3) we can study the distribution
of RNA structures with pseudoknots as a function of their
topological character. Let us illustrate this point by a
simple example for L = 4. In this case all possible contact
structures are listed in Fig. 1.

There is a total of ten possible arc diagrams, nine of
which are planar and one which is not planar. The nine
planar diagrams contain one diagram without arcs, six with
one arc, and two with two arcs. The same result can be
directly obtained by computing the matrix integral in
Eq. (3). In fact, as we will show later in this Letter, the
integral evaluates precisely to Z,(N) = 1 + 6v + 2v? +
v?/N?. Thus the coefficients of the asymptotic series have
a direct topological interpretation, and that is the reason
why the asymptotic 1/N? expansion is usually referred to
as topological expansion [11]. Each term of the series gives
the number of diagrams with a fixed topological character:
the first term represents planar diagrams, the second rep-
resents diagrams that can be drawn without crossing arcs
on a surface with one handle (the torus), the third are
diagrams that can be drawn without crossing arcs on a
surface with two handles, and so on. If we evaluate the
integral in Eq. (3) for any finite L and finite N, we will have
an analytical control over the topology and the combina-
torics of Eq. (2). In the rest of the Letter, we show explicitly
how to compute the integral in Eq. (3).

First, we note that by using a series of Hubbard-
Stratanovich transformations, Eq. (3) can be exactly sim-
plified to
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FIG. 1. All possible arc diagrams with L = 4. Diagrams with i

arcs are associated with the power v, and g is the genus.
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Z(N) = -
CAm
We see that the original integration over the L matrices ¢,
in Eq. (3) has been reduced to an integration over a single
N X N matrix o. The derivation of Eq. (7) from Eq. (3) is
obvious and will be given in a future publication [12]. Note
that the regulator a drops out as long as it is not zero. The

normalization factor A(N) is

- 5 N?/2
AN) = f dee= /2o’ — (%) N2 (8)

1
dge W/wya? Ntr(l + o). ()

The Gaussian matrix integral in Eq. (7) is straightforward.
We introduce the spectral density of the matrix o at finite
N:

1
A(N)
By inserting the identity 1 = [*% dApy(A) into Eq. (7),
we obtain

py(A) =

1
f dge~W/wya? N tré(A — o). (9)

Z,(N) = f_+°° dApn(A)(1 + AYL. (10)

[e e}

Thus the multidimensional integral of Eq. (3) has been
reduced to a one-dimensional integral. At this point, it is
convenient to study the exponential generating function of
Z;(N):

- * e 1(1+2)
G(t,N) = LZ_OZL(N)L—! = fiw dipy(A)e . (1)
The explicit form of py(A) is a well known and classic
result of random matrix theory (see, e.g., [13] or [14], and
we use it in the form given in [15]):

e~ (N/2R N=1, H2k</\ %)
W= S (1)
PN LN E\k+ 1) 2%
where H(x) are the Hermite polynomials,
2 dk 2
Hi(x) = (—Dke¥ —e™. (13)

dx
By inserting Eq. (12) into Eq. (11), one obtains

1= N o)
= (vt?/2N)+t
G(t, N) N k§_0<k N 1) TINE € , (14)

where we have used the formula

+ o0 5 5
f dxe ™ TVH (x) = y'e¥/* /. (15)

The sum in Eq. (14) can be expressed as a generalized
Laguerre polynomial,

N k
Wy — N+ 1\(—=z)
LY (2) ;)(N_k) o (16)
We finally obtain
1 t2
G(1, N) = e 2Nt L) (— —l;V ) (17)

From this exact result we can extract information on all the
coefficients Z; (N). The series expansion in # of G(z, N)
gives the first few coefficients Z; (N):

Z(N)

1

1+v

1+ 3v

1 + 6v + 2v% + v?/N?

1 + 10v + 10v?* + Sv?/N?

1 + 15v + 3002 + 503 + (1502 + 10v°)/N?
1 +21v + 70v% + 3503 + (3502 + 70v3)/N?
1+ 28v + 140v% + 14003 + 1404

+(700v2 + 280v° + 70v*)/N? + 21v*/N*

0 TN DA W~ |~

The meaning of these values is straightforward: the power
of v is the number of arcs in the diagram, and the power of
1/N? is the genus of the diagram. For instance, when L =
7 there are 21 planar diagrams with one arc, and 35 dia-
grams on the torus (i.e., genus one closed oriented surface)
with two arcs. The total number of diagrams for each fixed
genus can be obtained by putting v = 1 (for instance, the
total number of diagrams on the torus for L = 6 is 25).
Analogously, the total number of diagrams, irrespective of
the genus, can be obtained by putting N = 1 (for instance,
the number of diagrams for L = 4 with 2 arcs is 3).

The general 1/N? topological expansion of Z; (N) with
v=1Iis

> 1
ZL(N) = Z ap.q W’ (18)
L=0

where the coefficients a; , give exactly the number of
diagrams at fixed length L and fixed genus g. From formula
(17) and Eq. (18) we recursively obtain all the coefficients
ar,,- Moreover, by normalizing each a; , by the total
number of diagrams at fixed L, i.e., by N = Z; (1), we
can obtain the distribution of the number of diagrams. In
Fig. 2 we plot the distributions of diagrams as a function of
L and g. We note the interesting feature that for any given
L > 1 most of the diagrams are not planar, and they have a
genus close to a characteristic value (g);. Such a value
increases with L: we find numerically that it scales like
(g)r ~(0.23 £ 0.02)L, at large L. Also, for each fixed L
there is a maximum possible value for g, namely, g =< L/4.
Conversely, a structure can have a genus g only if it has a
length at least L = 4g. The distributions in Fig. 2 depict a
situation which is similar to what happens for regular knots
in homopolymers: analytical and numerical studies show
that the topological complexity of knots increases with the
length of the polymer (see, e.g., [16]).

It is important to note that even though the number of
planar diagrams, a; , is exactly the number of secondary
structures without pseudoknots, and the number of dia-
grams on a torus, i.e., ay; counts structures with one
pseudoknot only, a; , with g =2 counts structures that
contain either a single topologically complex pseudoknot
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FIG. 2. Left: The normalized number of diagrams a,, ,/ N at fixed g as a function of L. Right: The same quantity at fixed L as a

function of g. In both cases we put v = 1.

or several simple pseudoknots with small genus. For that
reason, the concept of irreducible pseudoknots has been
introduced in [6].

From Eq. (17) we obtain the exact asymptotics for the
number of diagrams a, , at fixed genus g and large length
L (see [12] for details):

1
Ke = 34— 0/22 % g /7’
19)

whereas the total number of diagrams at fixed L scales like
N ~ L2 exp(—L/2 + /L — 1/4)/+/2. Equation (19)
exhibits a ‘“‘universal” behavior ~3%, and a power-law
term ~L3¢~0/2 that depends on the genus g of the pseu-
doknots. From these findings we obtain the exact large-L
behavior (g); ~ L/4, which is consistent with the numeri-
cal observations above, meaning that the average genus of
a pseudoknot tends to be maximal. This is due to the lack of
steric constraints (which are known to affect the formations
of pseudoknots) together with the complete randomness of
the homopolymer described by our simplified model.

In this Letter, we have shown how one can compute the
number of folded structures as a function of the length and
of the genus of the RNA. This model is, of course, very
schematic and oversimplified. It allows one, however, to
obtain exact asymptotic results for long chains, and shows
that the average topological character scales linearly with
the length of the chain.
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