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Recent research in biology has clarified many features of the global organization of metabolic networks,
including the biochemical mechanisms responsible for power laws in metabolite degrees. The primary aim
of this Letter is to give the simplest possible biochemical explanations and minimal toy models based on a
highly optimized tolerance perspective, which show where and why metabolic networks have power laws.
A second aim is to further explain why scale-free explanations fail in this case to correctly describe

metabolism.
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Scale-free [1,2] (SF) and highly optimized (organized)
tolerance (trade-offs) (HOT) [3] theories both predict that
power-law node degree distributions should naturally arise
in complex networks, but for opposite and largely incom-
patible reasons. Here we focus on the stoichiometry of
metabolism, the simplest and most unambiguously known
aspect of biological networks. Along with the Internet
[4,5], metabolism has been proposed as the canonical SF
network [1], making it an attractive basis for comparing
these very different approaches. A stoichiometry matrix
(S-matrix) has rows of metabolites and columns of re-
actions, as shown for a simple pair of reactions in Fig. 1.
Figure 2 shows a color coding of the S-matrix for H. Pylori
core metabolism [6], with both metabolites (rows) and
reactions (columns) decomposed into modules.

This categorization of metabolites is compatible with the
standard schematic “‘bow tie”’ structure of metabolism [7],
where a large ““fan in” of nutrient inputs is catabolized to
produce a small handful of activated carriers and precursor
metabolites, which then “fan out” to the biosynthesis of a
large number of primary building blocks. The biologically
natural modular decomposition in metabolites is thus into
“knot” (carriers and precursors) and nonknot (others) parts
of the bow tie. While this is largely a network-level inter-
pretation of standard textbook biochemistry, statistical
studies [8] of 80 fully sequenced organisms produce simi-
lar conclusions about the universal bow tie structure of
metabolism. The information conveyed in the S-matrix can
be visualized as a color-coded bipartite graph, which we
call an S-graph, as shown in Fig. 1. Models which further
project bipartite S-graphs, as is standard in the physics
literature [1,2], with only either metabolites or reactions
(by elimination of the other) necessarily destroy their
biochemical meaning. An S-graph for the amino acids
biosynthesis module in H. Pylori is shown in Fig. 3.

The central claim motivating this Letter is that metabo-
lite degrees obey a power law, although degrees (number of
edges from a node) for both types of nodes, reaction and
metabolite, are biologically important (and equivalent to
degrees of columns and rows of the S-matrix). The full
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network metabolite degrees (black +) in Figs. 4(d)—4(f)
does show an approximate power-law distribution in a
log-log Figs. 4(e) and 4(f) rank plot and has clearly
higher variability than an exponential as seen in a semilog
Fig. 4(d) plot. What is more fundamental, however,
than power laws is high variability. For low variability
processes, Gaussians arise naturally because of the well-
known central limit theorem (CLT) and thus require
no additional ‘““‘special” explanations. Exponentials have
other important invariance properties and are also thus
quite common. All degrees of each module in Fig. 4 are
closer to exponentials and have low variability. Even more
important is that relaxing finite variance in the CLT yields

S, +ATP — S, + ADP
S,+ NADH <> S, + NAD

s, [-1]0

Sz 1 0 S1+82
s 0 Others

S, 1 S3=—-¢ S4

ATP | -1

ADP | 1

NADH _1 Carriers ADP NAD

NAD | 0 | 1 ATP NADH
S-matrix S-graph

FIG. 1 (color). S-matrix and S-graphs of the two reactions
shown among four carriers ATP, ADP, NADH, and NAD and
four other metabolites S;, S5, S3, and S4, with enzymes hidden.
The S-matrix has a color-code that helps visualize larger
S-matrices. Red and blue correspond to positive and negative
elements, respectively, for irreversible reactions, and pink and
green correspond to positive and negative elements, respectively,
for reversible reactions. An S-graph consists of reaction nodes
(black diamond), noncarrier metabolite nodes (orange square),
and carrier metabolite nodes (light blue square). Edges are color
coded as in the S-matrix, so all the information in the S-matrix
appears schematically in the S-graph. Carriers which always
occur in pairs (ATP/ADP, NAD/NADH, etc.) are grouped into
a single node.
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FIG. 2 (color). S-matrix for H. Pylori metabolism with 325 me-
tabolites and 315 reactions. Reactions (columns) are decom-
posed into standard functional modules of catabolism, amino
acid biosynthesis, nucleotide biosynthesis, lipid biosynthesis,
and vitamin biosynthesis. The rows (metabolites) are arranged
by their role in reaction modules to clarify the sparsity pattern of
long chains of successive reactions from inputs to outputs in
each module. The bottom rows are precursor metabolites and
carrier metabolites, which appear throughout different reaction
modules. The 12 precursor metabolites are outputs of catabolism
and are the starting points for biosynthesis. Carrier metabolites
correspond to conserved quantities, are activated in catabolism,
and act as carriers to transfer energy and phosphate groups (ATP/
ADP/AMP), hydrogen/redox (NADH/NAD), amino groups
(AKG/GLU), acetyl groups (ACCOA/COA), and one carbon
units (THF/METHF) throughout all modules. The other (than
carriers and precursors) metabolites occur primarily in separate
reaction modules.

power laws, which are further invariant under marginaliza-
tion, mixtures, and maximization [9]. Given the abundance
of high variability phenomena, power laws are an obvious
null hypothesis and should properly be viewed as ‘“more
normal than normal” [10]. Thus we focus on the mecha-
nism responsible for high variability in total metabolite
degrees despite low variability in all other degrees, includ-
ing reactions and module metabolites.

Table I shows the coefficient of variation (CV = o/,
where u and o are the sample mean and the standard
deviation) for the horizontal and vertical decomposition
of the S-matrix in Fig. 2. The CV is a standard measure
of variability with low variability exponentials having
CV =1, and power laws having divergent CV for large
data sets. The only high variability in Table I appears for all
metabolites in the full network (all modules). It is obvious
from Fig. 4(d), which shows the decomposition of metab-
olites into carrier (O), precursor (<), and other metabolites
(*), that the high variability in the whole network is created
by high o from carrier metabolites mixed with low u from
others. Figure 4(a) shows the decomposition of carrier
degrees into reaction modules. The larger marker corre-
sponds to the degree in the whole network, whereas the
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FIG. 3 (color). An S-graph for the amino acid biosynthesis
module of the H. Pylori S-matrix. The conventions are the same
as those in Fig. 1. This illustrates that long biosynthetic pathways
build complex building blocks (in yellow on the right) from
precursors (in orange on the left) in a series of simple reactions
(in the middle). Each biosynthetic module has a qualitatively
similar structure.

smaller ones correspond to those in each reaction module.
The sum of shared carrier metabolites across different
reaction modules pushes the total degree of carriers much
higher. In contrast, the degrees for other metabolites (*)
stays smaller with many low degrees in total [Fig. 4(d)]. Its
decomposition into reaction modules is shown in Fig. 4(c).
As they appear almost uniquely in each reaction module,
the sum across different modules increases the number and
thus ranks, but not greatly the degrees. The node degrees
for precursor metabolites have properties between those of
carriers and others [Fig. 4(b)]. Figure 4(f) and the bottom
row of Table I show another decomposition of all the
metabolites in the full network (+) into reaction modules,
each of which has relatively low variability. The reaction
node degrees, the number of metabolites involved in each
reaction, are shown in Fig. 5. The number of carriers
involved in a reaction is also an important statistic. The
typical reaction has four metabolites of which two are
carriers, and no reactions differ greatly from this. The
overall reaction degrees has very low variability (CV =
0.30), since the enzymes of core metabolism are highly
efficient and specialized for high fluxes of small metabo-
lites and thus necessarily have few metabolites and involve
simple reactions. This is not trivial, since the general
purpose polymerases, chaparones, and proteases involved
elsewhere in the cell have an almost unlimited number of
distinct substrates.

In summary, the overall high variability and thus appar-
ent power law in total metabolite degrees is created by a
mixture of a few high-degree carriers with the many (high
rank and) low degree of other metabolites unique to each
reaction module, with the precursors filling in between
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FIG. 4 (color).

Rank (cumulative distribution) of metabolite node degree (= number of reactions = number of links) for metabolic

networks of H. Pylori. Degrees of (a) carrier, (b) precursor, and (c) other metabolites in the whole network [large marker with (a) blue,
(b) red, and (c) dark green] and in each reaction module (small markers with pink, dark red, brown, orange, and light green colors).
Each module shows exponential distribution. (d) Metabolite node degrees of the whole network (black +) resulting from the mixture
of carrier (O), precursor (<), and other metabolites (*), for which the plot is the same as for (a), (b), and (c), respectively. (e) Log-log
plot of (d) indicates total degrees are approximately power laws. (f) The total metabolites in each reaction module with exponential
distribution sums up to create the power-law distribution in the whole network.

[Fig. 4(d)]. It is verified by the simplest HOT toy stoichi-
ometry model possible that still yields this high metabolite
variability. For its construction, we must abstract both the
biological functionality that metabolism provides the cell,
and the constraints on its components. A sufficient model
assumes that each reaction has exactly one global carrier
and one other metabolite, that there is just one carrier
which appears in every reaction, and that each other me-
tabolite is in just one reaction. With these assumptions, in r
reactions, the o and therefore the CV of both the carrier and
other metabolites is exactly 0, the lowest CV value pos-
sible. The mixture of carriers and others has one degree-r
carrier and r degree-1 others. For large r this gives u = 2
and o = \/r, so the total CV = ,/r/2. This is the highest

TABLE I. Coefficients of variation of metabolite node degree
distribution in catabolism (C) and amino acid (A), nucleotide
(N), lipid (L), and vitamin (V) biosynthetic modules. Each of the
carrier, precursor, and other metabolites has a low variability in
each module, and their sum results in the high variability in total.

C A N L V  All modules

Others 038 049 056 0.67 042 0.61
Precursors 047 1.05 0 035 061 0.60
Carriers 050 081 123 0.64 0.92 1.13

All metabolites 0.63 0.88 1.20 0.90 1.04 1.72

possible CV value that the metabolites in a nontrivial r
reaction S-matrix can have. This simple model thus shows
that even one shared common carrier makes a high varia-
bility at the full system despite low variability within all
modules.

These assumptions are so extremely simplified that they
would not even allow reactions to chain together to create
pathways, but this underscores the point that the mecha-
nism creating power laws in metabolism depends only
minimally on the properties of biochemistry per se, pro-
vided those properties are properly identified. This HOT
model is minimal in the biological sense that no simpler
reactions are possible and in the mathematical sense that it
has minimal assumptions and can trivially be solved ana-
lytically. Real S-matrices have broader distributions on
both metabolites and reactions and this smears out the
distributions and lowers the CV, but the qualitative features
are universal and preserved. Indeed, one could argue that
high variability itself is thus a relatively uninteresting and
certainly unsurprising feature of metabolism. Moreover,
the strong invariance properties of power laws means that
they can be easily caused by models based on only the most
minimal constraints of real metabolism, once they have
high CV. Of more interest is that the (both row and column)
modular bow tie structure of stoichiometry [7] shows it to
facilitate flexibility, adaptability, efficiency, robustness,
and evolvability in the face of a large number of constraints
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FIG. 5 (color). Reaction node degree (= number of substrates)
distribution for metabolic networks of H. Pylori. CV = 0.30.
The contributions of carrier metabolites to degrees is also
indicated.

on conserved quantities involving energy, redox, and many
small moieties. This kind of protocol-based modular archi-
tecture is ubiquitous throughout biology and advanced
technologies as well [7,11].

SF models provide explanations for power-law degree
distribution that are not just different, but in every way
completely opposite. A difficulty in evaluating SF models
is, however, that, beyond having power laws, the definition
of scale-free networks and its implications have never been
made precise. It is possible to provide a precise definition
and rigorous proofs of many of the claimed SF properties
[4], and it can be shown that none of the properties attrib-
uted to SF networks holds for metabolism. Although a full
treatment is well beyond the scope of this Letter, a few
issues can be briefly sketched. The most familiar feature of
SF networks is that their high-degree nodes are responsible
for global connectivity and their removal fragments the
network. That this does not hold at all for metabolism is
readily seen from Fig. 3, where the removal of all carriers
leaves the biosynthetic pathways fully intact. While it is
obviously true that without carriers metabolism would not
function, it is not explained by graph properties alone.
Thus the high-degree (carrier) nodes in metabolism are
not hubs in the sense of SF graphs. In fact, the metabolic
network is highly “self-dissimilar” in the sense that the
metabolite degree distributions are very different at the
full systems level (power law) and at the module levels
(exponentials), which is opposite from SF networks.
Metabolism consists of widely different scales in modules
as is shown in Fig. 4 and thus could more appropriately be
called scale-rich. Precise statements and proofs of these
assertions about self-dissimilarity and scale richness can be

made but require additional machinery [4]. That simplistic
graph models without any biochemical content can be very
misleading was also pointed out in [12].

The contrast here between HOT and SF models is not
special to either metabolism or to scale-free itself. Similar
results hold for SF models of the Internet [4,5], as well as
for models of power laws based on self-organized critical-
ity (SOC) [13]. The essential difference is that HOT tries to
minimally capture the trade-offs involved in robust and
efficient functionality in the presence of constraints and
uncertainties. It allows for and even explains the highly
structured and organized networks that result from engi-
neering design or biological evolution, as is illustrated by
metabolic stoichiometry. SF and SOC both emphasize
explaining a few macroscopic statistics, typically power
laws, that emerge from otherwise random models with
minimal tuning. When possible, HOT has been applied to
such models to illustrate the profound effects of evolution
or design. Here it was applied to find a minimal stoichi-
ometry that produced the low/high variability in degrees
seen in real S-matrices.

The author thanks John Doyle for helpful discussions.
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