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We study decoherence due to low frequency noise in Josephson qubits. Non-Markovian classical noise
due to switching impurities determines inhomogeneous broadening of the signal. The theory is extended
to include effects of high-frequency quantum noise, due to impurities or to the electromagnetic environ-
ment. The interplay of slow noise with intrinsically non-Gaussian noise sources may explain the rich
physics observed in the spectroscopy and in the dynamics of charge based devices.
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Considerable progress has been recently achieved in
implementing qubits with superconducting nanocircuits.
Coherent oscillations [1–3] and entanglement of coupled
charge qubits [4] have been observed. Limitations in the
performances arise from noise due to material and device
dependent sources [5–10]. Noise due to individual impu-
rities behaving as bistable fluctuators (BF) is a severe
source of dephasing for charge based devices. Sets of
BFs determine 1=f noise [11,12], and effects due to indi-
vidual BFs have been observed both in spectroscopy and in
time resolved dynamics [13,14]. Observations show a va-
riety of features, such as the drastic reduction of the
amplitude of the coherent signal [1,2,14] or relaxation
limited decoherence [3], strongly dependent on the par-
ticular device and on details of the protocol [2,15,16].
Theories of BF environments [6–8,16,17] allow us to
understand several physical aspects, although a quantita-
tive framework embedding the variety of phenomena is
still missing. Phenomenological models of the environ-
ment as a suitable set of harmonic oscillators [5,9,10]
have also been studied. While they are unable to describe
aspects related to the discrete nature of noise [6–8,16,17],
Gaussian environments may sometimes provide useful
information.

In this work we study numerically a model of discrete
noise which potentially explains the experimental features
due to 1=f noise, and seek a classification of the possible
effects on the basis of simple theoretical arguments. In
particular, we study inhomogeneous broadening due to
slow noise and its interplay with additional noise sources,
pointing out that the presence of BFs may pose reliability
problems for charge based devices.

We consider a qubit anisotropically [5] coupled to clas-
sical stochastic process ��t�. The Hamiltonian is

H � HQ �
1

2
��t��z; (1)

where HQ � � 1
2
~� � ~� refers to the qubit. Both the oper-

ating point, i.e., the angle � between ẑ and ~�, and the
splitting � are tunable. This also modulates sensitivity to
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noise. For weak coupling, the relaxation T�1
1 � s2S���=2

and the dephasing rate T�1
2 � �2T1��1 � T0�1

2 , T0�1
2 �

c2S�0�=2 being the adiabatic term which gives secular
broadening [18], are tuned by c � cos� and s � sin�.
Only the power spectrum of noise, S�!� � h��i!, enters;
therefore, in weak coupling the qubit is sensitive only to
properties of the environment at the level of two point
correlations. This picture breaks down if the environment
extends to low frequencies [19]. For instance, random
telegraph noise (RTN) due to a single BF, ��t� � f0; v0g,
switching at a rate �0 is slow if g0 � ��0 ���=�0 > 1
[7], where the qubit frequencies � and �0 � ���v0=��

c�2 � s21=2 correspond to the two values of �. This model
describes an incoherently switching charged impurity
close to a qubit. For g0 > 1 features of the discrete nature
of the BF become apparent [7].

A set of NBF BFs (�i) switching at rates �i, coupled with
the qubit via ��t� �

P
i�i�t�, models 1=f noise if �i are

distributed [11] with P��� / 1=�. The BF-1=f spectrum is
S1=f�!� �

P
i
1
2v

2
i �i=��2i �!2�, and if �i 2 ��m; �M, in

the same interval of frequencies is approximated by
S1=f�!� � ���=4�NBFv

2= ln��M=�m�!
�1. Noise extends

for several decades and, in particular, slow BFs (gi > 1), an
environment with memory, make unstable the calibration
of the device. Hence the qubit dynamics will depend on
details of the protocol. Decoherence due to BFs 1=f noise
for various protocols has been studied for � � 0, where
exact solutions are available [6]. On the other hand, the
splitting is less sensitive to fluctuations at optimal working
point [2], � � �=2 (parameters gi become smaller), and
part of the effects of the slow noise is eliminated (at lowest
order T0�1

2 vanishes).
Ideal quantum protocols assume measurements of indi-

vidual members of an ensemble of identical (meaning that
preparation is controlled) evolutions of the qubit, defocus-
ing occurring only during the time evolution. In practice
for solid-state devices one collects several qubit evolutions
in an overall measurement time tm. Lack of control on the
environment preparation determines defocusing of the sig-
nal, analogous to inhomogeneous broadening in NMR
2-1  2005 The American Physical Society
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FIG. 1 (color online). Simulations of an adiabatic BF-1=f
environment at � � �=2. Relaxation studied via h�xi (green
line) is well approximated by the weak coupling theory (dots).
Dephasing in repeated measurement damps the oscillations (thin
black line). Part of the signal is recovered if the environment is
recalibrated (thin gray line). Noise is produced by nd � 250 BFs
per decade, with 1=tm � 105 rad=s � �i � �M � 109 rad=s<
� � 1010 rad=s. The coupling �v � 0:02 � is appropriate to
charge devices, and corresponds to S�!� � 16�AE2C=! with
A� 10�6 [12]. The adiabatic approximation Eq. (2) fully ac-
counts for dephasing (red dotted-dash line). The static-path
approximation (SPA) Eq. (3) (blue solid line) and the first
correction (blue dashed line) account for the initial suppression,
and it is valid also for times t � 1=�M. In the inset Ramsey
fringes with parameters appropriate to the experiment [2] (thin
black lines). The SPA (blue solid line), Eq. (3), is in excellent
agreement with observations [14], and also predicts the correct
phase shift of the Ramsey signal (blue dots, compared with
simulations for small detuning & � 5 Mhz, violet line), which
tends to � �=4 for large times.
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[18]. This is also true for single-shot measurements [20]. In
our case, BFs active in additional broadening have �i >
�� �minfv=10; t�1m g [16].

We first study Hamiltonian (1) by simulating the sto-
chastic Schrödinger equation for the qubit in a BF-1=f
environment. We generate ��t� as a sum of NBF � 2000
RTN processes with proper distribution of parameters. In
order to minimize errors in generating ��t� we use a
‘‘waiting time’’ algorithm [21], which also reduces the
computational time. The qubit propagator is evaluated as
the product of the propagators between successive
switches. Finally, we perform the statistical average. We
study an ensemble of time evolutions of the qubit, each
lasting for a time t. During the overall time tm of the
protocol, the environment evolves in an uncontrolled
way, so BFs with �i � 1=tm average, whereas BFs with
�i � 1=tm are frozen. Thus for the simulation we consider
� 105 realizations of ��t0� for 0< t0 < t. For the individual
BFs at t0 � 0 we choose the same initial �i�0� � 0; 1 if
�i < 1=tm whereas if �i > 1=tm we take a distribution with
0< �i�0�< 1. This prescription has been checked against
more accurate ones in Ref. [16].

Results at � � �=2 for an adiabatic 1=f environment,
�M � �, show the presence of several time scales (Fig. 1).
Coherent oscillations of h�yi are initially suppressed with a
power law. Relaxation occurs on much longer time scales,
given by the weak coupling result. The initial suppression
is due to inhomogeneous broadening. This is apparent if we
compare with results with a feedback protocol simulated
by resetting ��0� at the same value for each realization of
��t0�.

Negligible relaxation allows us to treat ��t� in the adia-
batic approximation. Observables are then given by path
integrals over a weight P���t� of the stochastic process.
We study the averaged phase shift ��t�, defined as

e�i�t�i��t� �
Z

D��t0�P���t0�e�i
R

t

0
dt0����t0�; (2)

which gives the decay of the qubit coherences, h�yi /

exp�=��t�. Here ����t� � �f���t�=�� c2 � s2g1=2 is
the instantaneous qubit splitting. Numerical evaluation of
the path integral Eq. (2) fully agrees with the simulations.
Further insight is obtained by approximating Eq. (2). The
static-path approximation (SPA), ��t0� � �0, accounts for
lack of control on the environment preparation via a sta-
tistically distributed �0. This blurs the overall signal, an
effect analogous to the rigid lattice line breadth in NMR
[18]. For a set of BFs, if NBF is large enough �0 is Gaussian
distributed with variance �2� � v2NBF=4 �R
1
0 �d!=��S�!�, where it is intended that we consider

only active BFs, �i > ��. The result, plotted in Figs. 1
and 2 accounts for the initial suppression of the signal,
showing that this latter is entirely due to inhomogeneous
broadening. Therefore, the analysis of the initial suppres-
sion may give information on the amplitude of 1=f noise at
16700
intermediate frequencies 1=tm < � < 1=t. A good estimate
of the SPA is obtained by a quadratic expansion of���0� in
�0 [see Fig. 2(a)]

�i��t� � �
1

2

�c��t�2

1� is2�2�t=�
�
1

2
ln
�
1� is2

�2�t

�

�
; (3)

which is accurate close to � � 0 and � � �=2 for ��=�
small enough. The resulting suppression factor exp�=��
turns from a exp�� 1

2 c
2�2�t

2� behavior at � � 0 to a power

law, �1� �s2�2�t=��2�1=4, at � � �=2. These limits re-
produce known results for Gaussian 1=f environments,
namely, at � � 0 the t � 1=�M limit of the exact result
[22] and for � � �=2 the short-time result of the diagram-
matic approach of Ref. [9]. This is not surprising since the
SPA does not require knowledge about the dynamics of the
noise sources, provided they are slow [23].

Equation (2) can be systematically approximated by
sampling better ��t0� in �0; t. For the first correction
P���t� is approximated by the joint distribution
P��tt;�00�, where �t � ��t�. At � � �=2 for generic
2-2
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FIG. 3 (color online). Results of simulations with an adiabatic
plus fast BF-1=f environment (same parameters of Fig. 1 except
for �M � 1011 rad=s). Relaxation (thick solid green line) is
given by the weak coupling result (dots). The initial suppression
of the oscillation amplitude is partially removed by a feedback
protocol (shaded curves) and is well described by the two-stage
elimination SPA theory (solid red line), Eq. (4).
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FIG. 2 (color online). Signal decay at nonoptimal points.
(a) The SPA (solid red lines) is compared with the quadratic
approximation Eq. (3) (dashed blue lines) at different bias points.
Equation (3) works near � � 0 and � � �=2. The exact result at
� � 0 is also indicated (dots). This result multiplied by cos2� is
often used also at � � 0 for interpreting experiments (‘‘Saclay
theory,’’ diamonds). Out of the optimal point the SPA agrees with
results of the simulations with BF-1=f noise, for the set of Fig. 1,
at � � 5�=12 (b) and � � �=4 (c).

PRL 94, 167002 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
29 APRIL 2005
Gaussian noise we find

i��t� �
1

2
ln
�
1� i

�2��1���t�t

�

�
�
1

2
ln
�
1� i

�2���t�t

3�

�
;

where ��t� � 1
2�2

R
1
0 �d!=��S�!��1� e�i!t� is a transi-

tion probability, depending on the stochastic process. For
Ornstein-Uhlembeck processes it reduces to the result of
Ref. [10]. The first correction suggests that the SPA, in
principle valid for t < 1=�M, may have a broader validity
(see Fig. 1). For 1=f noise due to a set of BFs it is valid also
for t � 1=�M if �M & �. Of course, the adiabatic ap-
proximation is tenable if t < T1 � 2=S���.

The main effect of faster BFs in the 1=f spectrum is the
decrease of T1. Relaxation is due only to the fast part of the
spectrum !�� and well reproduced by the Golden Rule.
This is not true for decoherence; for instance, in our
example (Fig. 3) T2 � T1, as observed in the experiments
[3] of Astafiev et al. We study the interplay of fast and slow
noise by a two-stage elimination. We first decompose
��t� ! ��t� � �f�t�. Here ��t� represents all BFs having
switching rates small enough to be treated in the adiabatic
approximation, �i < �ad (in practice we may take �ad �
�=10). Fast BFs are described by �f�t� or better modeled
by a set of quantum impurities as in Ref. [6]. In this case
�f�t� ! �̂f and we have a quantum environment able to
produce also spontaneous decay. The reduced density ma-
trix of the qubit can be written as

'�t� �
Z

D��t�P���t�'f�tj��t�;

where 'f�tj��t� is the qubit density matrix resulting from
the elimination of the fast environment, under the ‘‘drive’’
��t�, and can be found within the weak coupling theory
[24]. This is very simple if we treat slow noise in the SPA,
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where ��t� � �0. We are left with averages over P��0� of
the entries of 'f�tj�0. For instance, the decay of the
coherences at � � �=2 is given by

e�1=4Sf���t�1=2 lnj1��i��Sf�0��1=2Sf����2�t=�
2j; (4)

where Sf�!� refers to the set of fast BFs, whereas �2� refers
to the set of slow BFs. Equation (4) agrees very well with
simulations (Fig. 3).

We notice that the validity of Eq. (4) is not limited to the
�1=� distribution of switching rates giving rise to 1=f
noise. According to this description, relaxation and inho-
mogeneous broadening are due to separate sets of BFs.
Therefore, no special relation is expected to hold between
T1 and T2. The mixed term in Eq. (4), due to the interplay
between slow and fast BFs, does not qualitatively change
this conclusion. Finally, Eq. (4) is rather independent from
the nature of the noise sources and the form of the spectrum
and it is applicable in other situations, e.g., when slow
impurity noise combines with fast electromagnetic noise.
Equation (4) becomes exact if �f determines white noise, a
scenario recently proposed to fit decoherence in phase-
charge qubits.

We come now to effects of the discrete nature of noise.
Results presented so far rely on the SPA and on the weak
coupling theory; therefore, they apply to situations where
discrete and Gaussian noise are indistinguishable. Striking
differences appear when only decoherence during time
evolution [6,16] matters, or if the distribution of environ-
ment couplings vi is wide [8], the realistic scenario for the
solid state. We now study the interplay of 1=f noise with
RTN produced by one BF which is more strongly coupled
with the qubit. The model for the BF is minimal: it is an
incoherent slow fluctuator, having �0 � 1=t � � but
2-3
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FIG. 4 (color online). (a) h�yi at � � �=2,� � 1010 Hz. The
effect of weak adiabatic 1=f noise (light gray line)
(��105; 109 Hz, uniform v � 0:002 �, nd � 250) is strongly
enhanced by adding a single slow (�=� � 0:005) more strongly
coupled (v0=� � 0:2) BF (black line), which alone would give
rise to beats (red line). (b) When the BF is present the Fourier
transform of the signal may show a split-peak structure. Even if
peaks are symmetric for the single BF alone (dashed line), 1=f
noise broadens them in a different way (solid line).
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v0 & �. Even if the BF is not resonant with the qubit [25]
it strongly affects the output signal. If g0 > 1 [7], it deter-
mines beats in the coherent oscillations and split peaks in
spectroscopy, which are signatures of a discrete environ-
ment. The additional BF makes bistable the working point
of the qubit and amplifies defocusing due to 1=f noise.
Even if the device is initially optimally polarized, during tm
the BF may switch it to a different working point. The line
shape of the signal will show two peaks, split by ��0 ��
and differently broadened by the 1=f noise in background.
The corresponding time evolution will show damped beats,
this phenomenology being entirely due to the non-
Gaussian nature of the environment. For illustrative pur-
poses we show results of a simulation at the optimal point,
where 1=f noise is adiabatic and weaker than the typical
noise level in charge qubits (see Fig. 4). This picture
applies to smaller devices. The fact that even a single
impurity on a 1=f background causes a substantial sup-
pression of the signal poses the problem of reliability of
charge based devices. An analytic two-stage elimination
combining the SPAwith the solutions for the dynamics of a
qubit coupled to an impurity [6,7] can be developed, and
will be presented elsewhere.

Recently, effects of the resonant coupling of the qubit
with a quantum two-level system, simulating defects in the
tunnel oxide, have been proposed to explain features of the
dynamics of phase Josephson qubits [25]. We have shown
that these effects are present even if the impurity behaves
as a slow stochastic fluctuator. Our model describes a very
common situation in the solid state [8], and it is a minimal
model for charge noise in charge and charge-phase qubits.
Finally, the interplay between slow noise and fast noise
with generic spectrum is likely to be important in general
and can be studied with Eq. (4). The main open questions
are the accurate characterization beyond phenomenology
16700
of the physics of the noise sources and the design of
specific strategies to defeat them and to improve reliability
of devices.
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