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Metal-Insulator-Like Behavior in Semimetallic Bismuth and Graphite
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When high quality bismuth or graphite crystals are placed in a magnetic field directed along the c axis
(trigonal axis for bismuth) and the temperature is lowered, the resistance increases as it does in an
insulator but then saturates. We show that the combination of unusual features specific to semimetals, i.e.,
low carrier density, small effective mass, high purity, and an equal number of electrons and holes
(compensation), gives rise to a unique ordering and spacing of three characteristic energy scales, which
not only is specific to semimetals but which concomitantly provides a wide window for the observation of
apparent field-induced metal-insulator behavior. Using magnetotransport and Hall measurements, the
details of this unusual behavior are captured with a conventional multiband model, thus confirming the
occupation by semimetals of a unique niche between conventional metals and semiconductors.
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FIG. 1 (color online). Temperature dependence of the
ab-plane resistivity �xx for a graphite crystal at the c-axis
magnetic fields indicated in the legend. The solid lines are the
fits to the data using the six parameters derived from the three-
band analysis described in the text. The shadowed region in the
inset and its mapping onto the data in the main panel indicate the
interval defined by Eq. (1).
Elemental semimetals, such as bismuth and graphite, are
intriguing materials to study because of their high magne-
toresistance, low carrier density n, and high purity.
Because of small values of n, magnetic fields on the order
of 10 T are sufficient to drive these semimetals into the
ultraquantum regime, where only the lowest Landau level
remains occupied. In addition, light cyclotron masses m�

for any field orientation in Bi and along the c axis in
graphite result in higher cyclotron frequencies, !c �
eB=m�, which ensure that quantum magneto-oscillations
can be observed at moderate temperatures. High purity
facilitates the observation of well-resolved oscillation pat-
terns. These features have made bismuth and graphite
perhaps the two most popular materials for studies of
quantum magnetic-field effects [1,2].

Recently, interest in magnetotransport in graphite has
been renewed due to observations (similar to those shown
in Fig. 1) of an effect that looks like a magnetic-field-
induced metal-insulator transition [3,4]. The metallic
T dependence of the in-plane resistivity in zero field turns
into an insulatinglike one when a magnetic field on the
order of 10 mT is applied normal to the basal (ab) plane.
Increasing the field to about 1 T produces a reentrance of
the metallic behavior [5]. It has been proposed that the low-
field effect is due to a magnetic-field-induced excitonic
insulator transition of Dirac fermions [5,6], whereas the
high-field one is a manifestation of field-induced super-
conductivity [5]. It has been also suggested [5] that the
apparent metal-insulator transition in graphite is similar to
that in 2D heterostructures [7] (although the latter is driven
by a field parallel to the conducting plane).

Similar metal-insulating-like behavior is also observed
in 99.9995% pure bulk bismuth crystals as shown in Fig. 2,
where the resistivity is plotted as a function of temperature
in successively higher magnetic fields. The crossover from
‘‘metallic’’ to ‘‘insulating’’ behavior has the same qualita-
tive behavior in both semimetals. On lowering the tem-
perature the resistance increases, as it does in an insulator,
05=94(16)=166601(4)$23.00 16660
but then saturates towards field-dependent constant values
at the lowest temperatures. These similarities invite an
interpretation that ascribes this interesting behavior to
properties shared by both graphite and bismuth, namely,
low carrier density, high purity, and an equal number of
electrons and holes (compensation), rather than to specific
properties of graphite: almost 2D nature of transport and a
Dirac-like spectrum, as suggested in Refs. [3–6].

In this Letter we demonstrate this connection by exam-
ining the magnitude and ordering of three characteristic
energy scales, namely, the width of the energy levels �h=�
where � is the electron-phonon scattering time, the cyclo-
tron energy �h!c, and the thermal energy kBT. We provide
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FIG. 2 (color online). Temperature dependence of the longitu-
dinal resistivity for a bismuth crystal at magnetic fields ranging
from 0 to 1 T in 0.1 T steps from top to bottom. The magnetic
field and the current are along the trigonal and binary axes,
correspondingly. In zero field, the resistance is approximately
linear in temperature.
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theoretical justification for, and experimental confirmation
of, the existence of a wide interval of temperatures and
magnetic fields, defined by the condition

�h=� & �h!c & kBT: (1)

In this interval, (a) the magnetoresistance is large, (b) the
scattering rate is linear in T, and (c) Shubnikov–de Haas
(SdH) oscillations are not resolved due to the thermal
smearing of Landau levels. We argue that the unusual
behavior of bismuth and graphite is due to the existence
of a region, specified by the inequalities of Eq. (1), and also
due to compensation between electron and hole charge
carriers. Our experimental confirmation is centered on a
detailed study of graphite in which we use the conventional
theory of multiband magnetotransport [8] to extract the
field-independent carrier density, n�T�, and scattering time,
��T�, from a simultaneous fitting of the temperature and
field-dependent longitudinal resistivity �xx�T; B� (magne-
toresistance) and transverse resistivity �xy�T; B� (Hall ef-
fect). We then show from this analysis that the inequality
(1), which is unique to semimetals, is satisfied over a broad
temperature and field range.

To illustrate the uniqueness of low-carrier-density semi-
metals, we compare them with conventional, high-density,
uncompensated metals. To begin with, if the Fermi surface
is isotropic, a metal exhibits no magnetoresistance because
the Lorentz force does not have a component along the
electric current [8]. In anisotropic metals the magnetore-
sistance is finite and proportional to �!c��

2 in weak mag-
netic fields, i.e., for !c� � 1. In stronger fields
(!c� � 1), classical magnetoresistance saturates, if the
Fermi surface is closed [9]. In contrast, transverse magne-
16660
toresistance of a semimetal grows as B2 both in the weak-
and strong-field regimes [9].

The magnetoresistance ���B� � ��0�	=��0� is much
larger in semimetals than in conventional metals. In addi-
tion to the saturation effect, described above, another
important factor that limits the magnetoresistance in con-
ventional metals is the higher scattering rates and thus
smaller values of the !c� product. The impurity scattering
rate in semimetals is smaller than in conventional metals
simply because semimetals are typically much cleaner
materials. The lower carrier density of semimetals also
reduces the rates of electron-phonon scattering in semi-
metals compared to that of conventional metals. For tem-
peratures above the transport Debye temperature, which
separates the regions of the T and T5 laws in the resistivity
��

D � 2 �hkFs=kB, where kF is the Fermi wave vector and s
is the speed of sound (both properly averaged over the
Fermi surface), one can estimate the electron-phonon scat-
tering rate as ��1 ’ �kFa0��m

�=m0�kBT= �h, where a0 is the
atomic lattice constant, and m� and m0 are, respectively,
the effective and bare electron masses [10]. In a conven-
tional metal, kFa0 ’ 1 and m� ’ m0. In this case, ��

D is of
the order of the thermodynamic Debye temperature
�hs=kBa0 ’ few 100 K and ��1 ’ kBT= �h. In low-carrier-
density materials (kFa0 � 1), which typically also have
light carriers (m� � m0), ��

D is much smaller and thus
��1 � kBT= �h. Therefore, in a low-carrier-density semi-
metal there exists a wide interval of temperatures and
magnetic fields, defined by the inequalities (1). In contrast,
there is no wide interval between �h=� and kBT in a con-
ventional metal [11].

An additional feature, crucial for interpreting the experi-
mental data, is that the Fermi energies of graphite (EF �
22 meV) [12] and bismuth [EF � 30 meV (holes)] [13]
are relatively low and the temperature dependence of the
resistivity comes from two temperature-dependent quanti-
ties: n�T� and ��T�. Purity of materials ensures that
electron-phonon scattering is a dominant mechanism for
resistance over a wide temperature range.

Standard 4-probe measurements were carried out on a
single-crystal highly oriented pyrolytic graphite (HOPG)
sample with a 2� mosaic spread, as determined by x rays.
The resistivity was measured using an ac (17 Hz) resist-
ance bridge over the temperature range 5–350 K. In all the
measurements, the magnetic fields were applied perpen-
dicular to the sample basal planes. Both �xx and �xy

(Fig. 3) were measured in magnetic fields up to 1 T,
although the analysis (solid lines) was limited to B �
200 mT. A small field-symmetric component due to mis-
aligned electrodes was subtracted from the �xy�B� data.

We used a standard multiband model [8] to fit the data.
Each band has two parameters, resistivity �i and Hall
coefficient Ri � 1=qini, where qi � 
e is the charge of
the carrier. In agreement with earlier studies, we fix the
number of bands to three [2]. Two of these are the majority
1-2
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FIG. 4 (color online). Temperature dependence of the fitting
parameters (graphite) for the bands indicated in the legends of
each panel. The near equality of the carrier densities of the two
majority bands (lower panel) indicates good compensation at
low fields (B< 200 mT) and the linear dependence of the
scattering rate on T (upper panel, dashed line) with a slope of
0.065(3) in units of kB= �h is consistent (see the text) with
electron-phonon scattering.
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FIG. 3 (color online). Longitudinal resistivity �xx (top panel)
and transverse resistivity �xy (bottom panel) versus applied field
B for graphite at the temperatures indicated in the legend. The
solid lines are determined by a fitting procedure that simulta-
neously includes both sets of data into a three-band model
described in the text. The inset in the bottom panel, with the
same units on each axis, magnifies the low-field region, where
the contribution from the third band with a lower carrier density
makes a major contribution that cannot be fit by solely using the
two majority bands.
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electron and hole bands, and the third is the minority hole
band [2]. Although the third band is not essential for a
qualitative understanding of the data, it is necessary for
explaining the low-field fine features in �xy shown in the
inset of Fig. 3. The minority band makes a negligible
contribution at higher fields due to its low carrier
concentration.

We fit �xx and �xy simultaneously by adjusting the six
parameters independently, until differences between the
fitting curves and the experimental data are minimized.
Because the majority carriers in graphite derive from Fermi
surfaces that have sixfold rotational symmetry about the
c axis, we need to use only the 2� 2 magnetoconductivity
tensor �̂i with elements �i

xx � �i
yy � �i=��2

i � �RiB�2	
and �i

xy � ��i
yx � �RiB=��2

i � �RiB�2	, where �i �
16660
m�
i =nie

2�i. The total conductivity �̂ �
P3

i�1 �̂
i is simply

a sum of the contributions from all the bands and the total
resistance is �̂ � �̂�1.

Qualitatively, the unusual temperature dependence dis-
played in Fig. 1 can be understood for a simple two-band
case where �xx reduces to

�xx �
�1�2��1 � �2� � ��1R2

2 � �2R2
1�B

2

��1 � �2�
2 � �R1 � R2�

2B2 : (2)

Assuming that �1;2 / Ta with a > 0, we find that for
perfect compensation, R1 � �R2 � jRj, Eq. (2) can be
decomposed into two contributions: a field-independent
term / Ta and a field-dependent term / R2�T�B2=Ta. At
high T, the first term dominates and metallic behavior
ensues. At low T, R�T� / 1=n�T� saturates and the second
term dominates, giving insulating behavior / T�a.

The actual situation is somewhat more complicated due
to the T dependence of the carrier concentration, the
presence of the third band, and imperfect compensation
between the majority bands. Results for the temperature-
dependent fitting parameters are shown in Fig. 4 where
band 1 corresponds to majority holes, band 2 to majority
electrons, and band 3 to minority holes. The insulatinglike
behavior of the carrier density with a tendency towards
saturation at low temperatures is well reproduced. For the
majority bands, 1 and 2, the carrier concentrations are
approximately equal and similar in magnitude to literature
1-3
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values [2]. The slope of the linear-in-T part of ��1 �

�expkBT= �h with �exp � 0:065�3� (dashed line in Fig. 4,
top panel) is consistent with the electron-phonon mecha-
nism of scattering. To see this, we adopt a simple model in
which carriers occupying the ellipsoidal Fermi surface
with parameters mab (equal to 0:055m0 and 0:040m0 for
electrons and majority holes, correspondingly) and mc
(equal to 3m0 and 6m0, correspondingly) interact with
longitudinal phonons via a deformation potential, charac-
terized by the coupling constant D (equal to 27.9 eV) . In
this model, the slope in the linear-in-T dependence of ��1

is given by [10] �theor � �
���
2

p
=��

������������������
�m��3EF

p
D2=�0s2ab �h

3,
where m� � �m2

abmc�
1=3 � 0:21m0 both for electrons and

holes, �0 � 2:27 g=cm3 is the mass density of graphite,
and sab � 2� 106 cm=s is the speed of sound in the
ab plane. (The numerical values of all parameters are taken
from the standard reference on graphite [2].) With the
above choice of parameters, �theor � 0:052 for both types
of carriers. This value is within 20% of the value found
experimentally. Given the simplicity of the model and the
uncertainty in many material parameters, especially in the
value of D, such an agreement between theory and experi-
ment is quite satisfactory.

The solid lines through the data points in Fig. 1 are
calculated from the temperature-dependent fitting parame-
ters derived from our three-band analysis and plotted in
Fig. 4. The shaded region (II) depicted in the inset of Fig. 1
represents those temperatures and fields that satisfy the
inequalities in (1). In region (I) SdH oscillations can be
seen at sufficiently low T. Our sample has a Dingle tem-
perature of 3.0 K. The boundary between (I) and (II)
reflects the rightmost inequality of (1) and is determined
by the relation T > �heB=m�. The boundary between (II)
and (III) reflects the leftmost inequality of (1) and is
determined by the relation B>m�=e��T�, where 1=��T�
is obtained from experimental fitting parameters (Fig. 4).
In the main panel of Fig. 1 we superimpose region (II),
again as a shaded area, on the �xx�T; B� data. Below the
lower boundary !c� < 1, and the magnetoresistance is
relatively small. The upper boundary is determined by
the locus of �B; T� points satisfying the rightmost inequal-
ity of (1). Clearly region (II), constrained by the inequal-
ities of (1), overlaps well with the metal-insulating-like
behavior of graphite. Since the majority bands of bismuth
comprise three noncoplanar electron ellipsoids and one
hole ellipsoid, a similar analysis for bismuth is more
complicated and would require more space than available
here.

We thus conclude that the semimetals graphite and, by
implication, bismuth share the common features of high
purity, low carrier density, small effective mass, and near
perfect compensation and accordingly obey the unique
energy scale constraints that allow pronounced metal-
16660
insulating behavior accompanied by anomalously high
magnetoresistance. At magnetic fields higher than dis-
cussed in this Letter (B � 1 T) we believe that the multi-
band model is still appropriate and may provide an
alternative explanation for the reentrant behavior observed
by us and others [5].

Subsequent to the completion of this study, we were
informed of recent work [14] which also used a two-band
model to explain the unusual behavior of �xx�T; B� in
graphite.
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