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Complex Shape Evolution of Electromigration-Driven Single-Layer Islands
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The shape evolution of two-dimensional islands through periphery diffusion biased by an electromi-
gration force is studied numerically using a continuum approach. We show that the introduction of crystal
anisotropy in the mobility of edge atoms induces a rich variety of migration modes, which include
oscillatory and irregular behavior. A phase diagram in the plane of anisotropy strength and island size is
constructed. The oscillatory motion can be understood in terms of stable facets that develop on one side of
the island, and which the island then slides past. The facet orientations are determined analytically.
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The manipulation of nanostructures by macroscopic
forces is likely to become a key ingredient in many nano-
technology applications. Understanding the influence of
external fields on the shape evolution of nanoscale surface
features is therefore of considerable importance. As a first
step in this direction we analyze here the effects of an
electric current on single-layer islands on a crystalline
surface. The islands evolve under surface electromigration,
the directed motion of adsorbed atoms due to the slight
force transmitted by collisions with the conduction elec-
trons in the sample [1].

Electromigration along interfaces and grain boundaries
is the most persistent and menacing reliability problem in
integrated circuit technology [2,3]. Correspondingly, much
work has been devoted to electromigration induced void
formation and breakdown in metallic conductor lines [3],
and the capacity for quantitative numerical modeling has
been demonstrated at least for simple void geometries
[4,5]. A major obstacle to achieving predictive power in
such studies, however, is the insufficient control over the
complex internal structure of the polycrystalline samples.
Hence an important motivation for investigating electro-
migration induced effects on simple, well-controlled nano-
scale morphologies, such as step patterns on vicinal
surfaces [6] and single-layer islands [7], is to bridge the
gap between the microscopic mechanisms of electromigra-
tion and their consequences on technologically relevant
length and time scales.

Electromigration of islands has been modeled previ-
ously using Monte Carlo simulations [8] and continuum
theory [9]. The continuum approach to island shape evo-
lution, which treats the island edge as a smooth curve, has
been successfully applied to a range of problems including
the diffusion [10] and sintering [11] of islands, and the
pinch-off of vacancy clusters [12]. Here we focus on the
regime of periphery diffusion (PD), where the dominant
kinetic process is the migration of atoms along the island
boundary. The shape then follows a local evolution law,
without coupling to the adatom concentration on the sur-
rounding terrace.
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We extend the model of [9] by including crystal anisot-
ropy in the adatom mobility. It was observed recently in the
context of step flow growth [13] that crystalline anisotropy
can change the behavior of step patterns in a qualitative
way. In the present case, it leads to the unfolding of a
remarkable richness of dynamic phenomena: in addition to
the scenarios of steady motion and island breakup [5,9]
observed in previous work, we find spontaneous symmetry
breaking, oscillatory shape evolution, and complex migra-
tion trajectories where different modes of motion alternate
in a periodic or irregular fashion. This highlights the
importance of properly including anisotropy in the model-
ing of boundary evolutions. Oscillatory shape dynamics
has been seen previously in a numerical study of void
electromigration [14], and transitions to quasiperiodicity
and chaos are known to occur in directional solidification
[15,16]. To the best of our knowledge, however, our work
provides the first example of complex shape evolution for a
closed contour subject to purely local dynamics.

In the PD regime, the normal velocity vn of the island
boundary satisfies the continuity equation
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Here s denotes the arclength along the island edge, and �
the atomic area. The square bracket multiplied by the edge
atom mobility � is the total mass current along the bound-
ary, which is driven by the tangential derivative of the
chemical potential �� � �~�� and the electromigration
force q�Et; ~� is the edge stiffness, � the local curvature, q�

the effective charge of an edge atom, and Et the tangential
component of the local electric field. The crystal anisot-
ropy of the surface enters through the dependence of ~� [17]
and � [11,18] on the orientation angle  of the island edge.

For atomic layer height islands on the surface of a thick
sample, the island boundary has a negligible effect on the
electric field; this is in contrast to the modeling of voids in
conductor lines, where the coupling of the void shape to the
electric field leads to a manifestly nonlocal problem
[4,5,14]. Here we can take the field to be of constant
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FIG. 1. Phase diagram of migration modes in the plane of
anisotropy strength S and island radius R0, for sixfold anisotropy
(n � 6) and the field aligned with a direction of maximal
mobility (� � 0). For each point on a grid of resolution 0:5�
0:5, the evolution of the island was followed until the asymptotic
mode could be identified. We distinguish between straight sta-
tionary (SS), oblique stationary (OS), oblique oscillatory (OO),
zigzag (ZZ), and complex oscillatory (CO) motion. In the upper
left corner of the diagram islands break up (BU). The cross on
the R0 axis indicates the linear instability of the circular solution
in the isotropic case.
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strength E0 and aligned along the x axis. Letting  denote
the angle between the normal of the island edge and the y
axis (counted positive in the clockwise direction), this
implies Et � E0 cos��.

Together with the specification of ~� and �, to be ad-
dressed below, this completes the definition of the local
boundary evolution (1). Comparing the two terms inside
the square brackets, we extract the characteristic length
scale [5,9,19] lE �

������������������������
�~�=jq�E0j

p
, which gauges the rela-

tive importance of capillary and electromigration forces;
electromigration dominates on scales large compared to lE.
Below, all lengths are reported in units of lE.

The isotropic version of (1), with ~�;� � const, has been
studied previously by Suo and collaborators [19–21]. A
circular island moving at constant velocity is stable for
(dimensionless) radii R< Rc � 3:26 [21]. Beyond the in-
stability, a bifurcation to two branches of noncircular sta-
tionary solutions occurs [20]. Numerical integration of the
time-dependent problem [22] shows that only one of the
branches, corresponding to islands elongated in the field
direction, is realized. At large radii, island breakup occurs,
mediated by the outgrowth of a finger of the kind found in
[19].

We now turn to the effects of crystal anisotropy.
Throughout this Letter, only the anisotropy of the adatom
mobility � will be taken into account, while the edge
stiffness ~� is kept isotropic. This is motivated partly by
the fact that the anisotropy in � is found experimentally (to
the extent that it has been investigated) to much exceed that
of ~� [18], and partly by our desire to disentangle kinetic
(�) and thermodynamic (~�) effects [23]. For the kinetic
anisotropy we employ the functional form [5]

��� � �max�1� S��1f1� Scos2
n�� ��=2�g: (2)

Since the prefactor �max only sets the time scale, the
relevant parameters in (2) are the anisotropy strength S,
the number of symmetry axes n, and the angle � between
an axis of maximal mobility and the electric field direction.
The natural time unit is tE � l4E=��max ~��

2� [5].
The simplest solutions in the anisotropic case are sta-

tionary islands moving at constant speed, which satisfy the
equation vn � V sin����; here the angle � accounts for
the fact that the island does not necessarily move in the
field direction. A complete analysis of stationary island
shapes has been achieved in the limiting case of zero
stiffness [22]. For an even number n of symmetry axes,
smooth stationary shapes are found for small S, while for
larger anisotropy, the shapes develop self-intersections; no
stationary shapes exist when n is odd. The migration
direction generally lies between the field direction and
the symmetry axis of the anisotropy.

Despite their mathematical interest, these results are of
limited applicability to real islands because all stationary
shapes are wildly unstable when ~� � 0. In the remainder of
the Letter we therefore focus on the numerical solution of
the full, time-dependent problem with ~� > 0 and ���
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given by (2). Two complementary numerical algorithms
have been employed. For relatively small islands, a finite
difference scheme described in [5] was found to be most
efficient, while for large islands we rely on the better
stability properties of a semi-implicit adaptive finite ele-
ment algorithm [24]. The full mutual consistency of the
two approaches has been checked.

Most results have been obtained for n � 6 and � � 0.
This leaves the anisotropy strength S and the initial con-
dition for the deterministic shape evolution to be specified.
Extensive calculations show that the dependence on the
precise initial shape is minor [25], and hence the initial
condition can be characterized by the radius R0 of a
circular island of the same area; in practice, we usually
start the calculation from a slightly distorted circle.

The phase diagram in Fig. 1 gives an overview of the
observed migration modes in the S� R0 plane [26]. For
small islands (R0  2) the evolution converges to a sta-
tionary shape which moves in the direction of the field. For
large S the shapes develop facets [22], similar to what has
been observed for void electromigration [5]. Increasing the
island radius, the direction of migration starts to deviate
from the field direction, and we enter the regime of oblique
stationary (OS) motion (Fig. 2). Since the field is aligned
with the symmetry axis of the anisotropy, the appearance
of obliquely moving solutions implies that the symmetry of
the problem is spontaneously broken. In the OS regime,
pairs of symmetry related stationary solutions coexist;
which solution is chosen in a given run depends on the
initial condition.
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FIG. 4. Time series of the island perimeter showing regular
and irregular oscillations. From bottom to top the parameters are
S � 2, R0 � 5; S � 5, R0 � 5; and S � 3, R0 � 8. The top
panel corresponds to the run shown in Fig. 5.
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FIG. 2. Stationary shapes for S � 2 near the transition from SS
to OS behavior. Arrows indicate the direction of motion.
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Upon further increase of R0 the obliquely moving shapes
start to oscillate (Fig. 3). Near the onset of oblique oscil-
latory (OO) motion at radius Rc

0, the oscillation period
diverges as T � jR0 � Rc

0j
�� with � � 2:5. For larger radii

higher harmonics of the fundamental oscillation period
appear and the motion becomes increasingly irregular
(Fig. 4). This characterizes the complex oscillatory (CO)
regime, which is exemplified in Fig. 5. The direction of
island motion displays random shifts, which seem to be
triggered by small fluctuations. This behavior is typical for
large islands, and it is distinct from the periodic direction
changes seen in the zigzag (ZZ) regime for moderate sizes
and small anisotropies (Fig. 3).

The true long-time behavior for large islands (R0 > 7)
and large anisotropy (S > 5) could not be pinned down
unambiguously with our current numerical methods.
Generally speaking, large islands with small anisotropy
break up, while for large R0 and S faceted shapes under-
going irregular motion dominate.

The example shown in Fig. 5 provides an important clue
to the origin of the complex shape evolution. After an
initial transient lasting until t � 300, the island settles
down into a shape consisting of a straight upper edge and
a lower edge which has broken up into a faceted hill-and-
valley structure. The direction of island motion coincides
with the orientation of the upper, straight edge, as shown
for a smaller island in the upper panel of Fig. 3. The key
observation is that the hill-and-valley structure on the
faceted edge does not move in the substrate frame. The
moving island slides past the static facets, causing the
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FIG. 3. Snapshots of OO motion for R0 � 4 and S � 1 (upper
panel) and ZZ motion for R0 � 3:5, S � 0:5 (lower panel) taken
at time intervals �t � 20. In both cases the perimeter displays
simple oscillations, as in the bottom panel of Fig. 4.
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shape to oscillate. Around t � 900 the roles of the upper
and lower edges are seen to reverse, and the direction of
motion changes.

Quite generally, large islands in the CO regime can be
constructed from four selected facet orientations 1, 2, 3,
4. Here 1 and 2 are the possible stable orientations of
the upper island edge, which must satisfy ��=2< 1 <
0< 2 <�=2. In the case considered here (� � 0, n even)
the corresponding orientations 3 and 4 for the lower edge
are obtained by reflection at the x axis, 3 � ��� 1 and
4 � �� 2. To form a closed shape, at least three ori-
entations must be combined, two of which are those two
symmetry related orientations that are closest to the hori-
0 20 40 60 80

0

100

200

110 140 170 200 230

800

900

1000

FIG. 5. Complex oscillatory motion with S � 3, R0 � 8. Light
lines show the facet orientations predicted from (3); dark dashed
lines illustrate that the hill-valley structure is static in the sub-
strate frame. Consecutive snapshots are shifted upwards in time.
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zontal direction ( � 0 or �). In Fig. 5 we see a transition
from a shape with orientations f1; 3; 4g to a shape with
orientations f1; 2; 3g.

The stable facet orientations can be computed along the
lines of [27]. The condition vn � 0 for a static shape
implies that the current in (1) is set to a constant j�.
Using the relation � � d=ds this can be brought into
the form

�~�
d2

ds2
 � �
j�=��� � q�E0 cos��� � �V 0��; (3)

which describes the position �s� of a particle moving in
time s subject to a potential V�� determined by the
mobility and the electric field strength. As explained in
[27], the coexistence of two stable facet orientations cor-
responds to a particle trajectory moving between two
degenerate potential maxima. To determine the selected
orientations, j� is tuned until two degenerate maxima
satisfying the above constraints appear. We have checked
that this procedure correctly accounts for the facet orien-
tations observed in the time-dependent calculations
throughout the relevant region of the phase diagram (see
Fig. 5). In general, stable facets can be constructed from (3)
only when the anisotropy is sufficiently large [27]. For n �
6, � � 0 the requirement is S > Sc � 1:77. No stable
facets are found when the number of symmetry axes is
too small (n  3); this may explain why we do not see
oscillatory shape evolution for a threefold anisotropy.

We close with two remarks concerning future research.
First, we note that the observed island shapes are quite
smooth, which implies that the number of circular harmon-
ics involved in the shape evolution is small. It thus seems
promising to attempt a description in terms of a low-
dimensional dynamical system, in the spirit of [16], to
gain a deeper understanding of the various migration
modes and the bifurcations connecting them.

Second, we address the experimental conditions under
which the predictions of this Letter could be realized. As an
example, we consider islands on Cu(100), for which most
material parameters entering the theory are available.
Following [8], we estimate that the electromigration force
on an edge atom at a current density of 107 Acm�2 is about
400 eV=cm. Together with the experimentally determined
stiffness [17] and mobility [18] for kinked steps at 300 K,
this yields a characteristic length of lE � 25 nm, and a
time scale tE on the order of seconds. Thus we expect
complex shape dynamics to be observable for island radii
around 100 nm and on time scales of a few hundred
seconds. As a first step towards a more detailed description
of specific surfaces, it would be important to identify
oscillatory shape evolution in kinetic Monte Carlo simula-
tions of island electromigration.

This work was supported by DFG within SFB 616
Energy dissipation at surfaces and SFB 611 Singular
phenomena and scaling in mathematical models.
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