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Triplon Modes of Puddles

X. Noblin,† A. Buguin, and F. Brochard-Wyart*
Physico-Chimie Curie, UMR 168 Institut Curie / CNRS, 11 rue Pierre et Marie Curie 75231 Cedex 05 Paris, France

(Received 30 December 2004; published 26 April 2005)
0031-9007=
Free fluctuations of the contact line of large drops (’’puddles’’) of wavelength � > ��1, the capillary
length, cannot be seen on a solid substrate because even a small but finite hysteresis is enough to block
these slow modes. We show here that vertical vibrations of the substrate (at frequency !E, acceleration �)
above a threshold amplitude �c release the line and excite contour oscillations (triplons). We observe
harmonic modes and parametric excitations at !E=2. We construct the phase diagram ��; !E� of these
subharmonic modes and we study their growth dynamics: they slow down near the threshold of the
contour instability.
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Introduction.—The statics and dynamics of contact lines
between a solid, a liquid, and air, in partial-wetting con-
ditions (finite contact angle 	E), have been extensively
studied both theoretically [1–3] and experimentally [4–
6]. The line elasticity energy Eq associated with an undu-
lation of amplitude uq and wave vector q was first con-
structed in [3]. The basic parameter is the capillary length
��1 �

������������
�=
g

p
(where � is the liquid surface tension, 
 the

density, and g the gravitational acceleration). There are
two regimes: (i) Capillary regime (q > �), where Eq �
1
2 �	2

Ejqju
2
q. This elasticity, which cannot be described in

terms of line tension, has been named ‘‘fringe elasticity’’
[1]. (ii) Gravity regime (q < �), the drop is flat, having a
thickness ec � 2��1 sin	E

2 [2]. The elastic energy is more
standard and described by a line tension T : Eq � 1

2T q2u2
q

where T � 4
3���1�1� cos3 	E

2 �. (T � 1
2���1	2

E for 	E 	

1). This line elasticity can be used to describe the shape of
the line pinned on a single defect: at short distances, the
profile decreases logarithmically; at long distance, the line
should behave like a regular string decreasing linearly.
However, this elastic energy is very weak and defects block
the line. It explains why this triangular deformation has
been seen only for a line floating on a liquid substrate [6].

The dynamics of contact lines fluctuations has been
studied for both viscous [4] and inertial regimes [5,6].
(i) In the viscous regime, dissipation occurs mostly in the
liquid wedge and is independent of q. The dispersion
relation is deduced from a transfer of elastic energy into
viscous dissipation. Experimentally, a liquid front is
pushed until it comes into contact with a row of droplets
deposited on a silanated silicon wafer [4]. The relaxation of
the line, observed only for large q, is in good agreement
with theoretical predictions. In that experiment, the main
difficulty is to obtain model substrates, free of hysteresis. A
very small contact angle hysteresis (H � cos	r � cos	a �
0:1, where 	r � receding, 	a � advancing contact angles)
was enough to pin the line motion at low q. (ii) In the
inertial regime, the mechanical energy is conserved:
1
2T q2u2

q � 1
2M!2u2

q, where M is the mass of liquid put
into motion by the line fluctuation. The inertial dynamic is
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more subtle because M depends upon q. The penetration of
the flow is q�1 in both regimes, leading to Mq � q�2	E in
the capillary regime, and Mq � q�1ec	E in the gravity
regime. The energy balance then leads to !2 � 	E

�

 q3

for both capillary and gravity regimes. These inertial line
fluctuations named ‘‘triplons’’ have been studied with
superfluid 4He. Recently, the conditions of pseudo partial
wetting of 4He on silicon wafers, where a microscopic film
smears the surface defects, have allowed Poujade et al. [5]
to observe triplons and confirm the dispersion relation
!2 / q3=2. Triplons have also been observed by us with
large water puddles deposited on immiscible liquids of low
viscosity [6]. But for floating lines, the dynamics are more
complex because backflows are induced in the substrate.
Our aim here is to study the triplons on real substrates
characterized by a small but finite hysteresis. To avoid
pinning the line by surface defects, we vibrate the substrate
vertically. We focus mainly on triplons in the gravity
regime, which appear when large drops are vibrated. For
a flat drop of radius Re and thickness ec, the modes are
discrete (qRe � m) and the dispersion relation is (see
Appendix):

!2
m � T m�m2 � 1�=
ecR

3
e: (1)

Note that m � 1 corresponds to a simple translation. For

small angles (ec � ��1	E;T �
	2

E
2 ���1) and m � 1, we

recover the scaling relation !2 � 	E
�

 q3. Such modes

have been observed qualitatively for drops in rapid evapo-
ration lying on a film of their vapor [7,8], for ultrahydro-
phobic substrates under vibrations [9,10] (where drops are
deposited on an air cushion), and at high frequencies [11].
Most studies on vibrated sessile drops are concerned with
the fixed contact line condition (see [12] and references
therein) or only axisymmetric modes [13].

Methods.—We look at the oscillations of a water puddle
of volume V (0:5 mL < V < 3 mL) lying on a solid sub-
strate and subjected to a vertical periodic acceleration: a �
�!2

E�0 cos�!Et� � ��cos�!Et�, where �0 and fE �
!E=2� are the amplitude and frequency of the vertical
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displacement of the substrate, respectively. Ultra pure
water drops are deposited on two different substrates.
(i) Untreated polystyrene (PS) petri dish with 	a � 92

1 �, 	r � 78
 1 � and H � 0:24. (ii) Silicon wafer coated
with an amorphous film of Teflon AF1601 with 	a �
125
 1 �, 	r � 115
 1 � and H � 0:15. Our substrates
are mechanically deformed to adopt a concave shape,
avoiding the escape of the drop. The sample is placed in
a closed vessel to reduce water evaporation and contami-
nation. To vibrate the substrate, we use a loudspeaker
linked to a power amplifier connected to a function gen-
erator (maximum vibration amplitude: 7 mm).

The vertical displacement of the substrate is measured
by the deflection of a laser beam using a Position Sensitive
Detector (PSD) connected to a data acquisition board.
Frequency and acceleration range between 5 and 100 Hz
and 0 and 1 g. The drop contour fluctuations are monitored
from above with a high-speed camera (1000 frames/sec-
ond), and a beam splitter provides a direct vertical illumi-
nation. The substrate and the flat parts of the drop reflect
the light and appear bright, the parts of the drop with a
significant interface slope appear dark (meniscus zone).
The captured images are stored and analyzed to find the
instantaneous position R�’� of the contact line in polar
coordinates. We performed a Fourier transform of this
function to obtain the spatial amplitude of each mode
�m �

PN�1
n�0 R�2�n

N �e�2�imn=N� (Fig. 1). We analyzed all
the images to obtain the time series �m�t�. For instanta-
neous contact angles larger than 90 �, the contour observed
does not correspond to the real contact line but to the
maximum radius of the drop. Nevertheless, for 	 �
120 �, the difference is small compared to the large ampli-
tude of motion observed (2%) and is neglected.

Results.—At rest, the drop has a circular shape. At time
t � 0 we start the excitation at a given frequency, and
progressively increase the acceleration amplitude �.
(i) First the contact line remains pinned, (ii) above a first,
unbinding threshold �u, the force increment on the line
overcomes hysteresis (�u=g ’ H=�1� cos	E�) and the
line becomes free to move [12]. We observe a pulsation
of the drop radius (mode m � 0): R�t� � Re ��R�t� at the
excitation frequency [Fig. 2(a)]. In a quasistatic approxi-
mation, at low !E, the thickness of the puddles is ec �
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FIG. 1. Experimental setup and image analysis.
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sin�	E=2�, which leads to �R=R ’

�=�4g�, using the conservation of the volume of the puddle
(V � �R2ec). A puddle, disturbed from its equilibrium
radius, fluctuates at frequencies !0 ’

��������
gec

p
=R (mode m �

0), where
��������
gec

p
is the velocity of the gravity waves on

shallow water. Typically, !0 � 8 Hz for R � 1 cm. As
soon as !E * !0, the quasistatic approximation does not
hold anymore: �R becomes very large near !0 and falls
almost to zero at higher frequencies. (iii) Above a second
threshold (�c), the contour becomes unstable and starts to
fluctuate. During a transient period, the instability grows
and reaches a stationary state corresponding to a given
eigenmode m [Fig. 2(b) and 2(c)]. The mode is subhar-
monic, with a frequency !m � !E=2 (Fig. 3). We also
observe weak harmonic resonances. For example, the har-
monic mode m � 3 arises in the same frequency region as
subharmonic mode m � 2: !3 � 2!2. In some regions of
the (!E;�) diagram, we do not observe a stationary state:
the regime is quasiperiodic with a low frequency modula-
tion of the subharmonic mode amplitude. We focus now on
the more remarkable features of the stationary subhar-
monic modes.

Transient regime: birth and growth of triplons.—In
Fig. 3(a), we plot the oscillations of the puddle radius, at
time t � 0 the vibrations begin (� > �c). The contour
fluctuates around Re at !E, and suddenly, a subharmonic
m � 3 mode (!3 � !E=2) starts to grow exponentially
with time ! [Fig. 3(b)] up to a stationary state. Plotting
1=! versus �R=R [Fig. 5(b)], we find a dynamic slow down
when approaching the instability threshold. We also see
that the radius oscillation �R decreases when the mode 3
grows [Fig. 3(a)].

Stationary regime.—At fixed frequency, we increase the
acceleration and we plot the amplitude of the harmonic
(m � 0) and subharmonic modes when the stationary re-
gime is reached. A typical plot is shown in Fig. 4(a) for
1 cm

(c)

FIG. 2. (a) fE � 9 Hz, harmonic variations of the drop radius:
mode m � 0 (�u < � < �c). (b) fE � 9 Hz, subharmonic
mode m � 3 (� > �c). (c) fE � 6 Hz, subharmonic mode m �
2 (� > �c). Drop radius: 1 cm. Half an excitation period
between each image.
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FIG. 3. (a) mode m � 0 (top) and m � 3 (bottom) amplitudes
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linear plot of the mode 3 amplitude versus time.
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m � 0 and m � 2. Above a first threshold �u (here 0.2 g),
the mode m � 0 starts to increase; at a second threshold �c
(here 0.32 g), the amplitude �2 increases rapidly. The
diagram is typical of a bifurcation diagram. Above the
threshold �c, the mode m � 0 grows much more slowly.
This is the signature of the coupling between mode m � 2
and m � 0 noticed previously.

Stability diagram.—We vary the frequency fE. For each
fE we increase �, and we measure �c�fE� and the ampli-
tude �R at the threshold. The corresponding stability
diagram for the mode m � 2 is shown in Fig. 4(b).

Using acceleration as a parameter, the limit of the in-
stability region decreases with frequency. In contrast, the
curve with the radius oscillation amplitude presents a
minimum and looks more like a classical tongue of the
parametric oscillator: under the curve, the drop remains
circular and in the region above the curve (shaded areas),
the drop presents shape oscillations (here mode m � 2). At
low frequencies (!E 	 !0), the two curves are close
because the quasistatic approximation holds, �R

RE
� �

4g . At
higher frequencies, the radius oscillations present reso-
nance and low acceleration are sufficient to obtain a large
response. We see clearly a large deviation from the quasi-
static law.

Interpretation.—When we increase the amplitude of
vibration of the substrate, we observe two thresholds:
(i) A transition between pinned and mobile contact line
occurs at �u=g ’ H=�1� cos	E�. The harmonic pulsation
of the drop above �u is dominated by the axisymmetric
mode m � 0. The amplitude becomes large when !E �

!0 ’
��������
gec

p
=RE [12]. (ii) A transition between axisymmet-

ric to non axisymmetric modes occurs above a second
threshold �c. The circular contour of the puddle becomes
unstable: a triplon, characterized by its azimutal number m,
starts and fluctuates at half the excitation frequency. This is
characteristic of a parametric oscillator. The deformation
of the contour around its circular shape [R�’; t� � Re �
u�’; t�] for the mode m obeys an oscillator equation (ne-
glecting all dissipation effects): �u � !2

mu � 0 where
16610
!2
m � m�m2�1�T


ecR3
e

. The coupling between triplons and verti-

cal vibrations comes from the fluctuations of R�t�.
Expanding !m�Re ��R cos!Et�, we obtain

�u � !2
m0�1� h cos!Et�u � 0 (2)

where !m0 is the eigenfrequency for R � Re and h �
3�R=R. This is the classical equation of a parametric
oscillator [14] where the eigenmode frequency is a peri-
odic function of time. If !E 	 !0, the fluctuations of R�t�
are quasistatic and h ’ 3�=4g is proportional to the am-
plitude of acceleration. If !E � !0, the parametric cou-
pling 3�R=R is measured experimentally. In the stability
diagram (Fig. 4) we used values of the radius oscillations in
the permanent regime for �R. Some solutions of Eq. (2)
are unstable modes at a frequency !E=2 very close to !m0:
� � �0est cos��!m0 � $=2�t� with !E � 2!m0 � $, $ 	

!m0 and s � 1=2
���������������������������������
�h!m0=2�2 � $2

p
. Parametric resonance

(s > 0) occurs in the range �h!m0=2 < $ < h!m0=2
(straight lines in Fig. 5). If we compare our measurements
with the theory for mode m � 2, we find that measured
thresholds are below expected. It can be explained by the
decrease of �R induced by the growth of the m mode
shown in Fig. 3. By plotting the maximum amplitudes
3�Rmax=R measured before the instability, we find a
good agreement with the theory (Fig. 5). For !E close to
2!m0, the threshold has a finite value related to dissipation
effects.

The phenomenon of parametric resonance is maintained
in the presence of slight friction, but the domain of insta-
bility is reduced. In our case, we have two dissipative
processes: (i) the viscous dissipation in the boundary layer
and (ii) the hysteresis, acting as solid friction. This adds
two contributions to Eq. (2):

�u � !2
m�1� h cos!Et�u � � _u � % sgn� _u� � 0 (3)

where � � &=
ec‘! (‘! �
�����������������
&=
!m

p
is the penetration

length) and % � �Hm=
ecRE is the hysteretic friction
(sgn _u � 1 if _u > 0 and �1 if _u < 0). The third term
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in Eq. (3) leads to a damping of the mode este��t. The limit
of instability becomes s � � > 0, leading to
$2 < h2!2

m0=4� �2. The resonance does not appear any
more for arbitrarily small h values. The fourth term (hys-
teresis) is more subtle. Instead of causing an exponential
damping, the mode amplitude � decreases linearly
(d�=dt � s� � V, V � 2%=�!m). The growth of � be-
comes � � V=s � ��0 � V=s�est. The mode grows only if
s�0 > V. At large amplitude of vibration, the stability
diagram corresponding to s � 0 can be approximated by
�3�R!m=�2Re� < $ < 3�R!m=�2Re� and s �
3�R!m=�4Re�. On the other hand, when � ! �c (s �
� ! 0), the growth time diverges 1=! � s � �. At the
frequency !E � 2!m0 , 1=! � 3�R!m0=�4Re� � �. We
plot 1=! versus h � 3�Rmax=R (maximum radius oscilla-
tions amplitude) for various !E [Fig. 5(b)]; we find a linear
dependance with a slope equals to 14 s�1 which is close to
twice the predicted value (!m0=4 � 6:3 s�1). In fact, as for
critical phenomena described by the Landau mean field
Hamiltonian [15], the critical relaxation frequencies above
and below the critical temperature differ by a factor of 2.

Conclusion.—The vertical vibrations of sessile puddles
lead to oscillations of the drop radius (mode 0), which
induce parametric instabilities of the contour, called sub-
harmonic triplons. We measure their characteristics
(growth time, amplitude, stability diagram). Our results
are the following: (i) The control parameter is the ampli-
tude �R of the mode 0, not the acceleration � of the
substrate. At low frequencies (! 	 !0), the puddle has
time to follow the modulation of the vertical acceleration;
then the two parameters are equivalent. But at higher
frequencies, the quasistatic approximation does not hold
anymore: the response �R=R becomes much larger near
resonance (! � !0) and falls down to very small values at
higher frequencies. (ii) Slow down of the growth time near
threshold. We made the first experimental measurement of
1=! versus �R=R. The divergence of ! near threshold is
typical of this phenomenon. (iii) Even for small contact
angles, the contour instability appears. (iv) When a mode
m becomes unstable and starts to grow, the amplitude of
mode 0 (source of the instability) decreases, leading to
16610
permanent regimes studied here, but also more complex
spatiotemporal behaviors (oscillatory or chaotic) which
will be studied later.

Appendix.—A large flat drop (thickness ec) can be de-
scribed as a 2D film [6]. A deformation of the contour gives
rise to a surface pressure � given by a Laplace law
extended to 2D (� � T

R ), where R is the curvature radius.
For a modulation of the contour (Rc � Re � u), the curva-
ture is 1

R � 1
Re
� u� �u

R2
e

, where �u � d2u
d	2 . In the inertial regime,

the flows are plug flows � ~vp�. The fundamental equation is

ec

@V
@t � �rp� and the conservation of area leads to

�� � 0. For a deformation u � u0 cosm	ei!t, this leads
to � � �Srm, with �S � 1

Re
� �m2 � 1� u

R2
e

and to the

dispersion relation Eq. (1).
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418(1991).

[5] M. Poujade, C. Guthmann, and E. Rolley, Europhys. Lett.
59, 862 (2002).

[6] X. Noblin, A. Buguin, and F. Brochard-Wyart, Langmuir
18, 9350 (2002).

[7] K. Adachi and R. Takaki, J. Phys. Soc. Jpn. 53 4184
(1984).

[8] D. E. Strier, A. A. Duarte, H. Ferrari, and G. B. Mindlin,
Physica A (Amsterdam) 283, 261 (2000).

[9] P. Aussillous and V. Bergeron, (private communication).
[10] N. Yoshiyasu et al., J. Phys. Soc. Jpn. 65 2068 (1996).
[11] Vukasinovic et al., Phys. Fluids 13, S14 (2001).
[12] X. Noblin, A. Buguin,and F. Brochard-Wyart, Eur. Phys. J.

E 14, 395 (2004).
[13] N. E. Bixler and R. E. Benner, 4th International

Conference on Numerical Methods in Laminar and
Turbulent Flow (Pineridge Press, Swansea, 1985) p. 1336.

[14] L. Landau and M. Lifshitz, Mechanics (Butterworth-
Heinemann, Washington, DC, 1987), 2nd ed.

[15] The order parameter of the triplon instability is M � R �
Re. To describe the stationary regime, the Landau expan-
sion can be written as F � 1=2aM2 � 1=4bM4 � . . . The
relaxation of M, which is not a conserved quantity, is ruled
by a dynamical equation k _M � �@F=@M. Below �c, a >
0, a fluctuation of M�t� relaxes M � M0e�st, with s �
a=k. Above �c, a < 0, M reaches a finite value M0 ��������������
�a=b

p
. The expansion of F around M0 leads to F �

F0 � jaj1M2 � O�1M4�. The fluctuation relaxes with a
frequency 2s.


