PRL 94, 164102 (2005)

PHYSICAL REVIEW LETTERS

week ending
29 APRIL 2005

Effective Desynchronization by Nonlinear Delayed Feedback
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We show that nonlinear delayed feedback opens up novel means for the control of synchronization. In
particular, we propose a demand-controlled method for powerful desynchronization, which does not
require any time-consuming calibration. Our technique distinguishes itself by its robustness against
variations of system parameters, even in strongly coupled ensembles of oscillators. We suggest our
method for mild and effective deep brain stimulation in neurological diseases characterized by patho-

logical cerebral synchronization.
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Synchronization is a natural property of interacting os-
cillators or functional units, intensively studied in many
physical [1-3], engineering [4,5], chemical [6,7], biologi-
cal [8], and medical [9,10] systems. However, synchroni-
zation is not always desirable. In fact, several neurological
diseases, such as essential tremor and tremor in
Parkinson’s disease, are caused by synchronized popula-
tions of oscillatory neurons [11,12]. The standard therapy
for such patients at an advanced stage is permanent elec-
trical deep brain stimulation (DBS) at high frequencies
[13]. However, in some patients DBS may not help or
may cause side effects, or its therapeutic effect may decline
over time [14]. Thus, there is a significant clinical need for
mild stimulation techniques which restore desynchronized
(i.e., normal [12]) dynamics in networks of oscillatory
neurons [10].

To control the dynamics of chaotic oscillators Pyragas
[15] suggested to use delayed feedback. Nowadays, the
impact of delay on the collective dynamics of coupled
oscillators is intensively studied; see, e.g., [5,16—19]. In
particular, delay-induced synchronization and multistabil-
ity of many phase-locked states [16] as well as of stable
synchronous and desynchronous states [18] has been re-
ported. Recently, Rosenblum and Pikovsky [19] proposed
to use linear delayed feedback to control synchrony in
ensembles of coupled oscillators. In the parameter plane
of feedback amplification and delay they found bounded
regions of desynchronization, complemented by wide
areas of stimulus-enhanced synchronization; see also
[17,18]. However, the risk of unintentional boosting of
synchronization limits the linear method’s applicability to
DBS, especially due to large variations (of 30% and more)
of the frequency of the neuronal target populations [20].

In this Letter we study the impact of nonlinear delayed
feedback, i.e., linear delayed feedback nonlinearly com-
bined with the instantaneous signal, on synchronization.
This yields a completely different result: robust desynch-
ronization. For several reasons this is important: (i) We
show that linear delayed feedback and nonlinear delayed
feedback have completely different effects and mecha-
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nisms of action. Our nonlinear delayed feedback cannot
reinforce synchronization, which is extremely important
for medical applications. Because of its nonlinear nature,
this type of feedback acts on saturation mechanisms by
effectively suppressing the amplitude of collective oscil-
lations. (ii) Our findings may contribute to a better under-
standing of the function of nonlinear feedback loops in the
central nervous system [9]. (iii)) We develop a reliably
desynchronizing stimulation technique which requires no
time-consuming calibration, which works on demand, with
a vanishing amount of stimulation, even in the case of
strong coupling, and is robust against parameter variations.
Our novel technique specifically counteracts the undesired
coupling and restores the oscillators’ natural frequencies.
Hence, our method may be particularly suitable for both
technical and medical applications requiring robust de-
synchronization by mild stimulation.

The method is demonstrated on ensembles of coupled
limit-cycle and phase oscillators. We consider the follow-
ing system of N globally coupled limit-cycle oscillators:

Z (1) =(a; +iw; —Z;}|)Z;(t) + CZ(), (1)

where Z; = x; + iy; are the complex variables of the
individual oscillators and Z(¢) := N~! Z?’:l Z,(1) is the
mean field of the ensemble. Without coupling (C = 0) all
oscillators independently rotate on limit cycles with indi-
vidual radii . /@; and individual natural frequencies w ;. The
variations of the mean field Z(r) are of order 1/+/N [2,21].
If the coupling strength increases, all oscillators synchro-
nize, i.e., start to rotate with the same frequency, where all
mutual phase differences decay (mod 27) [21]. The syn-
chronized dynamics is then characterized by large varia-
tions of the mean field [6].

We administer an external stimulus S;(¢) to the synchro-
nized ensemble (1) by adding the signal S;(¢) to the right-
hand side of Eq. (1). In our first example, the stimulation
signal S;(¢) is considered to take the form

S;j(1) := KZ()Z,()Z;*(t — 7), )

© 2005 The American Physical Society



PRL 94, 164102 (2005)

PHYSICAL REVIEW LETTERS

week ending
29 APRIL 2005

where K is a stimulus amplification parameter, 7 is a time
delay, and the asterisk denotes complex conjugacy. Results
of numerical simulations of system (1) stimulated with
signal (2) are shown in Fig. 1(a). Stimulation with K = 3
results in a suppression of the synchronization, leading to
small variations of the mean field. Moreover, an increase of
the number of oscillators in the ensemble further reduces
the variations: For N = 900 (red curve) the amplitude of
Z(t) in the stimulated regime is about 3 times smaller than
that for N = 100 (blue curve). Thus, the oscillators again
become uncorrelated as in the uncoupled regime for K =
C = 0. In addition, the stimulation does not destroy the
natural oscillatory activity of the individual oscillators
[Fig. 1(c)].

The desynchronizing effect of stimulation with signal
(2) depends on the stimulation parameters K and 7 as
shown in Fig. 2(a), where the averaged order parameter
(R(t)y =(IN! Z?’:] Z(0/1Z;(0)l]) is plotted versus K and
7. (-) denotes averaging over time. Let T denote the mean
period of ensemble (1) without stimulation (7 =5 in
Figs. 1 and 2). Then one can distinguish two different
regions in the (K, 7)-parameter plane: (i) In the broad
stripelike parameter regions around 7 = T(2n + 1)/2, n =
0,1,..., the order parameter practically vanishes. These
regions correspond to an ideal, complete desynchroniza-
tion in system (1) and (2). (ii) In the complementary stripe-
like regions around 7=7Tn, n=01,..., the
synchronization is also strongly suppressed, but the order
parameter (R(7)) attains slightly larger values. The differ-
ences of (R(¢)) between two parameter regions (i) and (ii)
become less pronounced for larger delay values 7, where
ideal desynchronization is achieved irrespectively of 7.
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FIG. 1 (color). Time course of the X(¢) component of the mean
field of system (1) stimulated with signal (2) in (a) and signal (3)
in (d). Coupling (C) and stimulation (K) are switched on at
different times: C = K = 0 for t <250, C =1 and K = 0 for
t € (250400), and C = 1 and (a) K = 3 and (d) K = 150 for
t >400. In (a) the mean field is depicted for N = 100 (blue
curve) and N = 900 (red curve). In (d) the mean field (blue
curve) and the corresponding stimulation force |S(7)| (red curve)
are shown for N = 100. In subplots (b) and (e) the graphs are
enlarged for ¢ € (700, 900), and in (c) and (f) two trajectories x;
are depicted for ¢ € (700, 740). Delay 7 = 7.51in (a) and 7 = 5
in (d). The mean period of ensemble (1) 7 = 5 (mean natural
frequency w = 27/T = 1.2566...), the frequency distribution
is Gaussian with deviation o = 0.1; a; = 1.0.

Moreover, changing the polarity of the stimulation signal
(K < 0) reverses the situation: For K < 0 ideal desynch-
ronization can easily be obtained for delay values 7 in
regions (ii), whereas the oscillators are slightly less de-
synchronized in regions (i). Hence, for small 7 connected
with a subideal level of desynchronization, the latter can
reliably and easily be improved by simply reversing the
polarity of the stimulation.

Since the stimulation signal (2) directly depends on the
mean field Z(z), the stimulation force, i.e., the amplitude of
the stimulation signal |S j(t)l, vanishes as soon as a de-
synchronized state of system (1) and (2) is achieved. This
realizes a noninvasive (in terms of control theory) and
demand-controlled method for desynchronization in a
natural way. We call the stimulation protocol above with
the stimulation signal (2) individual stimulation. From the
standpoint of applications this protocol requires on-site
measurement and stimulation of each individual oscillator.
In some applications individual stimulation might not be
feasible. To overcome this limitation, one can use only a
finite number of stimulation and recording sites. Below we
present a simulation protocol which we call global stimu-
lation. It operates with only one stimulation site and one
registration site. The stimulus affects all oscillators instan-
taneously with the same stimulation signal S;(r) = S(z),
j=1L2..,N

S(t) == KZ*()Z*(t — 7). 3)

The results of numerical simulations of system (1) and
(3) are presented in Fig. 1(d). In the stimulated regime (¢ >
400), the variations of the mean field (blue curve) are
reduced by a factor of approximately 14, if compared to
the synchronized regime [ € (250400)]. This indicates a
high level of desynchronization. Moreover, the stimulation
force |S(7)| (red curve) is of the same order as the ampli-
tude of the mean field. Note that the delay 7 in Fig. 1(d) is
equal to the mean period T of ensemble (1). Such a choice
of 7 appears to be unfavorable for the individual stimula-
tion with positive stimulus amplification K [Fig. 2(a)]. In
contrast, in the case of global stimulation the choice of the
delay is of minor importance for the desynchronization
outcome [Fig. 2(b)]. For any 7> 0 the averaged order
parameter (R(f)) monotonously decays with increasing K.

T2 2T s 00 T
FIG. 2 (color). Averaged order parameter (R()) of the stimu-
lated ensemble (1) with N = 100 versus parameters K and 7
with stimulation signal (2) in (a), and signal (3) in (b). The other
parameters are the same as in Fig. 1.
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In this way, any level of desynchronization, i.e., any desir-
able small values of (R(z)), can be achieved by simply
increasing K.

We investigate the phase dynamics of ensemble (1)
globally stimulated with signal (3) in more detail. To this
end, we consider a system of globally coupled phase
oscillators corresponding to system (1) stimulated by the
phase representation of signal (3):

(1) = w; + CR(®)sin[O(1) — ¢;(1)] + KR*()R(t — 7)
X sin[20(1) — O(t — 7) — ¢;(1)], C))

where ¢/;(t) are the phases of the limit-cycle oscillators (1).
R(7) and O(z) are the order parameter and the mean phase,
respectively, defined by R(f)e’®? = N~! Z;V:l i [6].
To explore the desynchronization mechanism of the
global stimulation, we follow the evolution of the individ-
ual averaged frequencies @; = (i ;(1)) of oscillators (4) as
the stimulus amplification K increases. As before, the
distribution of the natural frequencies {w;} is Gaussian
with mean @ = 27/5 = 1.26 (mean period T = 5) and
deviation o = 0.1. In a synchronized regime without
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FIG. 3 (color). Desynchronization mechanism of global stimu-
lation and multistability of desynchronized  states.
(a) Differences between the individual averaged frequencies

w; and the natural frequencies w; for K = 150 and for 7 =
T/2 (green curve) and 7 = T (blue and red curves, obtained for
two different initial conditions). () is the mean frequency of a
desynchronized state. In (b) and (c) the order parameter R (red
symbols) and the mean frequency () (blue symbols) obtained by
simulation of N = 100 phase oscillators (4) are shown. The
values of R(r) are plotted for time intervals of 40 mean periods
T after skipping a transient of 2000 periods. The solid curves are
the theoretical prediction of R and ) from Eq. (6). In (¢) the
mean frequencies }; and (), (blue symbols) realized for two
different initial conditions of system (4) correspond to red and
blue curves in (a), respectively. Parameters C = 1.0, T = 5.0,
(b) 7= 2.5, and (c) 7 = 5.0.

stimulation, all oscillators rotate with the same averaged
frequency ; = @, j = 1, N. When the stimulation is on
and the stimulus amplification K increases, the individual
averaged frequencies approach the natural frequencies.
This is illustrated in Fig. 3(a), where the differences @; —
w; are shown for K = 150 and for 7 = T/2 (green curve)
and 7 = T (blue and red curves). In the latter case 7 = T,
two different initial conditions of system (4) are used to
illustrate the phenomenon of the stimulation-induced mul-
tistability of desynchronized states. The multistability
manifests itself in different mean frequencies €}, i.e., aver-
aged frequencies of the mean phase ©(f) of the de-
synchronized states: () = 0.78 (blue curve) and
Q) = 1.73 (red curve) in Fig. 3(a). On the other hand, for
7 close to T/2,3T/2, 5T /2, etc., the stimulation preserves
the mean frequency of the ensemble, as illustrated in
Fig. 3(a) for 7 = T/2: ) = @ = 1.26 (green curve). The
small values of the differences w; — w; indicate that the
oscillators get back their original frequencies for suffi-
ciently large values of parameter K. In other words, the
stimulation causes a robust desynchronization by restoring
the natural frequencies of the oscillators.

We model the dynamics of the mean field W(r) =
R(1)e'®® of the strongly synchronized and stimulated en-
semble (4) by a single limit-cycle oscillator in the form

W(r) = g[l _IWOPTW) + imW() + ng(t)W*(t —),
5)

where @ is the mean natural frequency of the ensemble. In
a strongly synchronized regime, for large enough C >0
and K = 0, the dynamics of the mean field of ensemble (4)
for large N can be approximated by a uniform rotation on
the unit circle with the frequency () = @ emerging in a
Hopf bifurcation [6]. Global stimulation (3) affects all
oscillators in the same way and is modeled by the same
stimulation term in Eq. (5).

From Eq. (5) one can see that the cubic term of the
stimulation signal is the nonlinearity of smallest order,
which does not destroy the uniform Hopf oscillation of
the mean field, but only suppresses its amplitude. Indeed,
the trivial solution W(z) = 0 of Eq. (5) is unstable for C >
0, with positive eigenvalue C/2. The other solutions of
Eq. (5) have the form R(r) = R # 0, O(r) = Qt + const,
where the constant amplitude R and the mean frequency ()
can be derived from

Q54+ KCsin(Q7) R C
=w s —
2C —2Kcos(Q1)’ C— Kcos(27)

(6)

Equation (6) has infinitely many solutions Q) for |K| =
C [22]. However, with increasing |K| any selected mean
frequency () saturates, and thus, the order parameter R(r)
of ensemble (4) and the stimulation force |S| decay with
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increasing stimulus amplification K according to
R~ K72 S|~ IKI7'2, (7)

An optimal solution of Eq. (6) is given by ) = @ and
R?> = C/(C + |K]). According to Eq. (6) such a solution
can be realized for 7 = T/2,3T/2,5T/2,...,if K > —C,
or for =T, 2T, 3T, ..., if K < C. These values of the
delay 7 are optimal in the sense that the order parameter R
attains its minimum given by the optimal solution with the
smallest proportionality coefficient in Eq. (7). With the use
of the linear stability theory [23], we found that the solu-
tions W(r) = Re'®® of Eq. (5) with amplitude and fre-
quency of the optimal solution are stable.

In Figs. 3(b) and 3(c) we illustrate the good agreement
between the dynamics of the mean field of ensemble (4)
and the theoretical model Eq. (5). In Fig. 3(b) the delay
7 = 2.5 = T/2, at which the optimal solution of Eq. (5) is
stable for K > 0 (solid curves). This corresponds to the
case, where the natural frequencies of oscillators (4) are
completely restored [Fig. 3(a), green curve]. In Fig. 3(c)
the delay 7 = 5.0 = T, at which the optimal solution is not
admissible for K = C [22]. This solution loses its stability
with increasing K at K,y = 2C/(C7 + 2) [K,s =~ 0.286 in
Fig. 3(c)] via a pitchfork bifurcation giving birth to two
new stable frequencies (), , shown in Fig. 3(c). Depending
on the initial conditions the dynamics of the stimulated and
desynchronized system (4) can realize different mean fre-
quencies () as illustrated in Fig. 3(c). This corresponds to
the case, where the natural frequencies of oscillators (4) are
not completely restored but are slightly shifted compared
to the uncoupled case [Figs. 3(a), red and blue curves].

In conclusion, nonlinear delayed feedback opens up new
avenues of approach to the issue of effective control of
synchronization. We propose a powerful method for de-
synchronization of even strongly synchronized ensembles
of coupled oscillators. Because of its inherently demand-
controlled design, our method restores the natural frequen-
cies with a minimal amount of stimulation. The individual
and the global stimulation protocols introduced here con-
stitute borderline cases of a variety of intermediate stimu-
lation protocols, which use a finite number of recording
and stimulation sites, where the number of sites can flexi-
bly be chosen as desired for the respective application. The
method works equally well if a small latency time is
introduced in the stimulation signal. Our nonlinear delayed
feedback method allows us to parry large variations of
system parameters, such as the mean frequency in DBS
target populations. Its effectiveness and robustness make
our method superior to previously designed desynchroni-
zation methods using either repeated administration of
pulse sequences [10] or linear delayed feedback [19]. We
propose our method for the therapy of neurological dis-
eases with pathological synchronization, e.g., tremor in
Parkinson’s disease or essential tremor.
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