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Measurement of the 199Hg� 5d96s2 2D5=2 Electric Quadrupole Moment and a Constraint
on the Quadrupole Shift

W. H. Oskay, W. M. Itano, and J. C. Bergquist*
Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA

(Received 22 November 2004; published 26 April 2005)
0031-9007=
The electric-quadrupole moment of the 199Hg� 5d96s2 2D5=2 state is measured to be ��D; 5=2� �
�2:29�8� � 10�40 Cm2. This value was determined by measuring the frequency of the 199Hg�

5d106s 2S1=2 ! 5d96s2 2D5=2 optical clock transition for different applied electric-field gradients. An
isolated, mechanically stable optical cavity provides a frequency reference for the measurement. We
compare the results with theoretical calculations and discuss the implications for the accuracy of an
atomic clock based upon this transition. We now expect that the frequency shift caused by the interaction
of the quadrupole moment with stray electric-field gradients will not limit the accuracy of the Hg� optical
clock at the 10�18 level.
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Atomic frequency standards provide the foundation for a
wide range of experiments and precision measurements
that not only have produced the most accurately realized
determinations of many physical quantities, but that have
also produced some of the most stringent tests of our
fundamental concepts and theories of nature. For example,
recent, highly accurate absolute frequency measurements
of several microwave and optical frequency standards have
yielded sensitive probes of possible temporal changes of
some of the fundamental constants [1–3]. The precision of
these measurements was limited by the uncertainties of the
systematic frequency shifts of the clock transition in the
individual atomic frequency standards. In these and other
experiments, greater sensitivity would be possible with
atomic frequency standards that obtain inaccuracy below
the 1 part in 1015 typical of the best, present-day atomic
standards—the cesium fountain standards [4], which pro-
vide both the definition and realization of the SI second.
Optical frequency standards offer the potential of reaching
inaccuracies approaching 1 part in 1018. Many of these
standards, based on narrow transitions in either ions or
neutral atoms, are being pursued worldwide [5].

The inaccuracy of trapped-ion optical frequency stan-
dards based upon weakly allowed, electric-quadrupole
transitions in Hg� [6], Sr� [7], and Yb� [8] has been
dominated by uncertainty in the electric-quadrupole shift
that arises from the interaction of the excited state electric-
quadrupole moment with stray electric-field gradients.
Preliminary reports of a quadrupole shift in Hg� [9] and
the quadrupole moment of Yb� [8] have previously been
reported, but have done little to constrain possible error due
to the quadrupole shift. A recent measurement of the Sr�

quadrupole moment [7], made by measuring the shift in the
absolute frequency of the clock transition for several ap-
plied electric-field gradients, has now demonstrated that
inaccuracy below 10�15 is possible in that species.

In this Letter we report an experimental measurement of
the 2D5=2 electric-quadrupole moment of the mercury ion
05=94(16)=163001(4)$23.00 16300
and compare it to theory. We determined its value by
measuring the frequency shift of the 5d106s 2S1=2�F �

0� ! 5d96s2 2D5=2 (F � 2, mF � 0) electric-quadrupole
transition in a single 199Hg� ion with respect to the reso-
nance of a highly stable optical cavity [10] for various
applied electric-field gradients and magnetic-field orienta-
tions. A major advantage of this technique is its relative
speed and simplicity due to the high signal-to-noise ratio
afforded by the spectrally narrow laser and stable cavity.
The data reported here were collected in less than five
hours of operating time, all with the same ion. By measur-
ing the shift without an applied electric-field gradient, we
also place an upper bound on the contribution of the
quadrupole shift to the uncertainty of the mercury clock.

The electric-field gradient was applied by adding a bias
voltage to the end caps of our spherical rf (Paul) trap,
which consists of a ring electrode and two end cap elec-
trodes that are ac grounded and normally held near ground
potential. The ring electrode was driven with voltage
V�t� � V0 cos��t� � Vec relative to the end caps, where
the rf frequency was � � 2�� 12:007 MHz. The electri-
cal potential of the trap has the form of a 3D quadrupole,
��x;y;z;t��V�t��x2�y2�2z2�=d20, where d20 is a geomet-
ric factor with dimensions of area. The ion was laser cooled
to a temperature of a few millikelvins and the trap potential
was made deep enough to resolve the secular sidebands
[11]. To determine d0, we measured the secular frequency
in the radial direction �r as a function of V0 and Vec. Fitting
the results to the known dependence of �r on these pa-
rameters, we found d20 � 1:08�1� mm2, where the uncer-
tainty is limited by the use of a fitting model that neglects
high-order terms [12]. The static component of the quad-
rupole field is AQ � �Vec=d

2
0 � �Vec=�1:08�1� mm

2�

along the trap axis.
We oriented the quantization axis (magnetic-field ori-

entation) at an angle � from the symmetry axis of the trap,
ẑ. Following Ref. [13], the quadrupole shift in the energy of
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FIG. 1 (color online). Method of data analysis, illustrated with
data for AQ � 36 V=mm2 and B k ẑ. The raw data after sub-
tracting the linear drift (a) (solid line) show the 120 s modulation
and small unmodeled drift. Averaging over the modulation
period leaves only the slowly varying drift (dotted line).
Subtracting this drift, we have a signal (b) that contains only
the modulation. Plotting these data in a single effective modu-
lation period (c), we measure the amplitude by taking the mean
value (solid line) in the range 30 to 58 s after each edge.
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the clock transition is given by

h��Q �
4

5
AQ��D; 5=2��3cos2�� 1�; (1)

where h is the Planck constant, ��Q is the change in the
transition frequency due to AQ, and ��D; 5=2� is the quad-
rupole moment of the 2D5=2 state. For the quantization axis
along the trap axis (� � 0 	), ��Q � 8AQ��D; 5=2�=5h.
If instead the quantization axis is perpendicular to the trap
axis, the quadrupole shift is opposite in sign with half the
magnitude: ��Q � �4AQ��D; 5=2�=5h. In general, the
quadrupole shift averages to zero over measurements
with any three orthogonal quantization axes [13].

Frequency-doubled light from a dye laser at 563 nm was
used to probe the clock transition. The frequency of the dye
laser was locked to a resonance of a highly isolated, high-
finesse (F 
 200 000) Fabry-Perot cavity. The locked la-
ser has a fractional frequency instability of about 3–4�
10�16 between 1 and 10 s, corresponding to a linewidth of

640 mHz at 282 nm [10]. Two acousto-optic modulators
(AO1, AO2) shift the frequency of the stabilized light away
from the cavity resonance onto the atomic resonance. The
frequency fAO1 of AO1 was swept to compensate for the
predictable linear drift (& 1 Hz=s) of the cavity. AO2 gives
a shift fAO2 to the frequency of the 563 nm beam.
Following AO2, the light was frequency doubled and di-
rected onto the mercury ion. The ion was probed with
single 40 ms pulses and the measured linewidth at
282 nm was transform limited to a full width at half
maximum (FWHM) of 20 Hz. The frequency fAO2 was
alternately stepped positive or negative by an increment
equal to half the FWHM so as to probe the clock transition
on both sides of the resonance. A digital servo system then
steers fAO1 to match the cavity-stabilized laser frequency
to the center of the atomic resonance.

For the measurements of the quadrupole moment, we
locked the laser to the atomic resonance and drove Vec with
a nearly square modulation waveform with a period of
120 s. The waveform consisted of 59 s segments alternately
at Vec � 0 V and Vec � VA, separated by 1 s ramps. The
same voltage was applied to both end caps, to within 1%,
for each value of VA.

For changes in the clock transition frequency that are
small compared to the linewidth, the servo system steers
the laser frequency with a time constant near 15 s. To
maintain lock and to maximize the signal-to-noise ratio,
we implemented a feed-forward system to introduce an
estimated step change �est into the servo system during the
1 s changes in Vec. With an appropriate choice of �est, the
servo stays near equilibrium and follows large changes,
independent of the transform-limited linewidth.

We collected data by counting the frequency 2jfAO1j
with a commercial frequency counter with a gate time of
1 s. A change in 2jfAO1j corresponds to twice the change in
the frequency at 563 nm and therefore gives the frequency
16300
change at 282 nm. Data were collected at four values of VA
for two different orientations of the magnetic field B, B k ẑ
and B ? ẑ. Each run was between 30 and 38 min long. The
field magnitudes were jBj � 1:99�6� � 10�5 T, as deter-
mined by spectroscopy of the 2S1=2�F � 0� ! 2D5=2 (F �

2, mF � �1) Zeeman-sensitive lines. Ambiguities in the
orientation of B, the ion trap, and the quadrupole field
inside the trap lead to an uncertainty in � of �5 	. Since we
are measuring ��Q at local extrema, errors in � can only
reduce the shift.

The data analysis procedure (Fig. 1) relies upon the
short-term stability of the reference cavity. The raw data
from the counter are dominated by the linear drift of the
cavity. After subtracting a linear fit, the signal shows both
the modulation and the residual drift of the cavity. These
data were averaged over a 120 s window to leave only the
slowly varying, unmodeled drift. This residual drift was
subtracted from the data to yield a nearly square wave
signal at the modulation period. Simulations confirm that
this procedure does not bias the results of the analysis.
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Finally, the data were compiled by replotting modulo
120 s. Because the servo may track in towards some final
value, data from the first 30 s after each change in Vec were
rejected. A 2 s segment of time before each change was
also rejected to ensure that the analysis was not influenced
by the subsequent change. The amplitude of the signal was
determined from the mean value of the data in each re-
maining segment.

The estimated step frequency �est was approximately
�0:5 Hz=V�VA for the data points with B k ẑ. Two addi-
tional data runs were taken for the case AQ � 36 V=mm2

and B k ẑ, where the value of �est was changed by �20%
from the initial estimate. The compiled data for these runs
showed significant tracking in of the frequency. The am-
plitudes calculated for these runs were displaced by �5%
respectively from their average. For cases with an appro-
priate choice of �est (such as that in Fig. 1), no tracking in
was visible. Uncertainty due to residual servo error was
estimated by taking the standard deviation of the shift
measured during the second, third, and fourth 15 s intervals
of the modulation period, rather than the usual 28 s inter-
val. This method correctly estimated the �5% servo errors
for the cases where �est was deliberately offset by �20%.
The combined servo error uncertainty and statistical un-
certainty of the amplitude at each data point was in the
range 0.15 to 0.47 Hz.

The results of the measurements for each B field
orientation at each value of VA are shown in Fig. 2.
Weighted linear fits to the two data sets yielded
slopes �0:550�5� Hz=�V=mm2� for B k ẑ, and
�0:261�17� Hz=�V=mm2� for B ? ẑ. The average of the
slopes weighted by their variance is
�0:549�6� Hz=�V=mm2� for � � 0	.
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FIG. 2. Quadrupole shift as a function of the electric-field
gradient applied to the trap. Data are shown with B k ẑ (filled
boxes) and with B ? ẑ (open boxes). The two curve fits
shown are linear with slopes �0:550 Hz=�V=mm2� and
�0:261 Hz=�V=mm2� respectively. Error bars representing the
combined servo error uncertainty and statistical uncertainty
would be smaller than the symbol at each data point.

16300
At high values of the end cap voltage there was small but
detectable excess micromotion [14] for which we did not
fully compensate. Excess micromotion can lead to
an ac Stark shift and second-order Doppler shift that
(in this case) depend upon Vec. While shifts of this type
can potentially be large, we are able to constrain them
because they both must be independent of B. The fits
for both orientations of B had zero-offset frequencies
below 0.3 Hz and a difference in slope that agreed with
the expected factor of �2 to within the slope uncertainty.
Using that uncertainty, we estimate that the error caused by
micromotion in determining the slope is bounded by �3%.
There is also uncertainty in the slope due to uncertainty in
the calibrations of d0 ( � 1%) and � ( � 1:1%). We made a
correction of �0:5% in the absolute value of the slope to
compensate for bias due to the uncertainty in determining
� to arrive at a final slope of �0:552�19� Hz=�V=mm2�.
From Eq. (1), the quadrupole moment was thus measured
to be ��D; 5=2� � ��5h=8� � 0:552�19� Hzmm2=V �
�2:29�8� � 10�40Cm2 � �0:510�18�ea20, where a0 is
the Bohr radius.

A single-configuration Hartree-Fock calculation with
the Cowan code [15] predicts ��D; 5=2� � �0:664ea20
[13]. The results of a multiconfiguration Dirac-Hartree-
Fock (MCDHF) [16,17] calculation of ��D; 5=2� are
shown in Table I. Three successively larger sets of virtual
orbitals were generated by minimizing the sum of the
energies of the lowest 2D5=2 and 2D3=2 states, weighted
by �2J� 1�, keeping the previously determined orbitals
fixed. The orbitals added to the reference 5d96s2 2D5=2;3=2

configurations are listed for Stages 2, 3, and 4. Sets of
configuration state functions were generated by allowing
single and double excitations to the virtual orbitals from
the 6s valence and the f5s; 5p; 5dg core shells, with at most
one excitation from the core. At Stage 5, some core-core
correlation was included by adding configuration state
functions with up to two excitations from the f5s; 5p; 5dg
core and up to three excitations from the f5d; 6sg set of
shells to the virtual f7s; 6p; 6d; 5fg orbitals. Stage 5 was a
configuration-interaction calculation in which the
Hamiltonian matrix was diagonalized, using the orbitals
TABLE I. Sequence of calculations with an expanding set of
virtual orbitals and core excitations. For each stage of the
calculation, the quadrupole moment ��D; 5=2�=ea20 and the
hyperfine constant A are given.

Stage Description �=ea20 A (MHz)

1 Reference �0:6887 991.1
2 �f7s; 6p; 6d; 5f; 5g; 6hg �0:5299 1087.1
3 �f8s; 7p; 7d; 6f; 6gg �0:5460 940.2
4 �f9s; 8p; 8dg �0:5421 910.9
5 �f5s; 5p; 5dg core-core �0:5463 926.1
6 �f3d; 4s; 4p; 4d; 4fg core-valence �0:5440 963.5
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determined at Stage 4. In Stage 6, additional core-valence
correlation was included by adding single excitations from
the f3d; 4s; 4p; 4d; 4fg shells, with or without a single 6s
excitation, to the full Stage 4 set of virtual orbitals, in a
configuration-interaction calculation. The final result for
��D; 5=2� is �0:5440ea20, about 7% larger in magnitude
than the experimental value. The hyperfine constant A also
was evaluated at each stage. The final result for A was
963.5 MHz, about 2.3% smaller than the experimental
value of A of 986.19(4) MHz [13]. The discrepancies are
probably due to neglected core-valence and core-core cor-
relation terms. No other calculations of ��D; 5=2� have
been reported. Brage et al. [18] obtained a value for A of
the 5d96s2 2D5=2 state of Hg� of 1315 MHz, using the
MCDHF method with a less extensive set of relativistic
configuration state functions.

We have also calculated the quadrupole moments of the
5d 2D5=2 state of Sr� and of the 4d 2D3=2 state of Yb�, for
which recent measurements are available [7,8]. The
MCDHF results are ��D; 5=2� � 2:99ea20 for Sr� and
��D; 3=2� � 2:04ea20 for Yb�. The experimental values
are 2:6�3�ea20 for Sr� [7] and 3:9� 1:9ea20 for Yb� [8].

The error budget for the mercury-ion clock has thus far
been dominated by a conservatively chosen �10 Hz [19]
on the quadrupole shift due to stray electric-field gradients.
The field gradient and orientation are unknown, so know-
ing the quadrupole moment alone does not constrain the
shift. Likewise, the results of an earlier measurement in a
linear ion trap [9] do not constrain the shift in the spherical
trap. After our measurements of the quadrupole moment,
we looked for a frequency shift of the clock transition but
without applying a significant end cap voltage (voltages of
�7 mV on the two end caps were applied to compensate
for stray patch charges). We switched the B field orienta-
tion between two axes of an orthogonal coordinate system
with a 120 s period, and repeated this procedure with a
different pair of axes. The maximum quadrupole shift
along these axes was measured to be 0:33� 0:34 Hz.
The error in the clock frequency due to the quadrupole
shift is thus constrained below 1 Hz, when the quantization
axis is one of these axes. With the present inaccuracy of
magnetic-field alignment, averaging over measurements
along the three axes should suppress the shift by a factor
of 200, constraining the residual quadrupole shift to below
�10 mHz, a fractional frequency error of less than 10�17.
With improved field alignment, the shift is not expected to
limit the accuracy of the clock at the 10�18 level. We are
also considering an alternative approach [20] to nulling the
quadrupole shift, where the shift is averaged over magnetic
sublevels rather than field orientation.

Short of a full evaluation versus a second optical fre-
quency standard, it is difficult to further constrain the
systematic shifts of the mercury clock. Shifts due to excess
micromotion are now expected to be a dominant source of
16300
error. At present, we conservatively estimate that the total
uncertainty will be less than or equal to �1 Hz for future
measurements of the clock frequency when nulling out the
quadrupole shift.
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