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Deuteron Transfer in N � Z Nuclei
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Predictions are obtained for T � 0 and T � 1 deuteron-transfer intensities between self-conjugate
N � Z nuclei on the basis of a simplified interacting boson model which considers bosons without orbital
angular momentum but with full spin-isospin structure. These transfer predictions can be correlated with
nuclear binding energies in specific regions of the mass table.

DOI: 10.1103/PhysRevLett.94.162502 PACS numbers: 21.60.Fw, 21.10.Dr, 25.70.Hi
In the study of atomic nuclei, it was recognized at an
early stage that the attractive interaction between the fer-
mionic constituents of the nucleus would lead to pairing
analogous to that found between electrons in the superfluid
phase of condensed matter [1]. In nuclei near stability with
sufficient valence nucleons to form a condensate, the ef-
fects of pairing between like nucleons, neutrons or protons
are observable, but it is only recently that the opportunity
has arisen to study the exotic, proton-rich species with
masses in the range of 60–100 where deuteronlike,
neutron-proton pairing may be manifest. This is predicted
to occur on the specific locus defined by equal numbers of
neutrons and protons (N � Z), where the valence nucleons
move in orbits with identical quantum numbers. Neutron-
proton pairing can be either isoscalar T � 0 (spin-triplet)
or isovector T � 1 (spin-singlet) and this leads to a gen-
eralized structure of the condensate, typical of superfluid-
ity in a two-component system. The most obvious experi-
mental signature for the existence and character of this
generalized condensate is an enhancement in the proba-
bility for the transfer of a pair (either T � 0 or T � 1) into
or out of it and it is therefore the purpose of this Letter to
obtain first estimates for the cross sections for deuteron
transfer between medium-heavy N � Z nuclei. These es-
timates can be tested by contrasting the reaction (d; 4He)
where only T � 0 deuteron transfer is possible with re-
actions like (p; 3He) which allow both T � 0 as well as
T � 1 deuteron(like) transfer. The relevant experiments
will require the new generation of radioactive beam
facilities.

The interacting boson model (IBM) [2] provides a de-
scription of nuclei in terms of correlated nucleon-pair
excitations which are treated as bosons. As such, it offers
a natural framework to discuss the issue of two-nucleon
transfer. Two-neutron and two-proton transfer have been
analyzed in the early days of the model (see, e.g.,
Refs. [3,4]) using the neutron-proton version of the model,
IBM-2 [5], which includes neutron-neutron (nn) and
proton-proton (pp) bosons. A description of deuteron
transfer requires a more complicated version of IBM which
involves bosons corresponding to np pairs. Such exten-
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sions have been considered in the past, and of particular
relevance is the so-called IBM-4 [6] since it contains np
pairs with isospin T � 0 and T � 1. The full IBM-4 is a
rich spectroscopic model [7] with bosons with orbital an-
gular momentum L � 0 (s boson) or L � 2 (d boson), with
intrinsic spin S � 0 or S � 1, and with isospin T � 0 (if
S � 1) or T � 1 (if S � 0). This particular choice of bo-
sons is justified on the basis of the nuclear shell model [8].

To avoid the complexity of the full IBM-4, it is instruc-
tive to confine the analysis to L � 0 bosons. This simpli-
fication preserves the complete spin-isospin structure of
the model—crucial for the study of deuteron-transfer
properties—and can be put to use in the analysis of the
competition between isoscalar and isovector pairing in
self-conjugate nuclei [9]. The dynamical algebra (in the
sense of Ref. [10]) of the L � 0 IBM-4 is U(6), obtained
from two vector bosons. One is vector in isospin while
scalar in spin and the other boson is vector in spin while
scalar in isospin. Based on a comparison with the full
IBM-4 and its interpretation in terms of the shell model,
one can justify the use of a simplified IBM-4 in all N � Z
nuclei and also in even-even N � Z but not in odd-odd
N � Z nuclei. In the latter case the favored U(6) represen-
tation of the full IBM-4 is nonsymmetric [6] and is not
contained in the simplified L � 0 IBM-4.

Two different symmetry classifications occur in the
L � 0 IBM-4:

U �6� �
�

SU�4�

UT�3� � US�3�

�
� SOT�3� � SOS�3�: (1)

The total number of bosons �Nb� labels U(6) while SOT�3�
and SOS�3� are associated with the total isospin T and the
total spin S of the bosons. Mathematical details on the two
limits in (1) can be found in Ref. [11] where also the
correspondence is studied between the U(6) model and
its fermionic analogue, the SO(8) model of T � 0 and
T � 1 pairing with neutrons and protons [12]. A simple
Hamiltonian that describes the transition from one limit of
(1) to the other is of the form

H0 � aC2�SU�4�� � bC1�US�3��; (2)
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where Cn�G� denotes a linear or quadratic (n � 1; 2)
Casimir operator of the algebra G. The first term in (2) is
associated with SU(4) and implies equal single-boson en-
ergies and boson-boson interactions in the two isospin-spin
channels �T; S� � �0; 1� and �1; 0�. The second term breaks
this equivalence between the two channels. With respect to
a previous study [9], the linear instead of the quadratic
Casimir operator of US�3� is considered in (2). Any of the
two (or a combination of them) leads to comparable results
but the linear operator is taken here since it can be shown
[13] to originate from the one-body spin-orbit term of the
shell model (see below).

The transition from SU(4) to UT�3� � US�3� is governed
by the single parameter b=a and intermediate results can be
obtained after diagonalization [9].

Deuteron transfer is described in this model by the
operators by01 (by10) for T � 0 (T � 1) transfer, where by01
(by10) creates a boson with T � 0 and S � 1 (T � 1 and
S � 0), both with orbital angular momentum L � 0. To
establish the connection with measured cross sections, we
note that the amplitude for two-nucleon transfer in the
reaction � 
 A� a ! � 
 B� b is given by [14]

T �!� � �
X
N

GN�L; S; J�KNLML
� ~k�; ~k��; (3)

where � depends on the isospin and spin labels of the initial
and final states, and KNLML

� ~k�; ~k�� is a kinematical factor,
obtained in a distorted wave Born approximation and
depending on the relative initial and final momenta ~k�
and ~k� in the center-of-mass frame. The nuclear structure
dependence is contained in the factor GN�L; S; J� which, in
the specific case of orbital angular momentum L � 0 trans-
fer, reduces to

GN�L � 0; S � J� �
X
nl

h00N0; 0jnlnl; 0i�TS
nl ; (4)

where the sum is subject to the constraint N � 2�2n� l�.
Two terms enter into this expression. The first is the Talmi-
Moshinsky bracket [15,16] necessary to transform from
individual to relative and center-of-mass coordinates of
neutron and proton, which can be done exactly in case of
single-particle wave functions of the harmonic oscillator.
The second term is the parentage amplitude

�TS
nl � h�B k �aynl1=21=2 � aynl1=21=2�

�0TS� k �Ai; (5)

where �A and �B are the wave functions of the target and
product nuclei A and B. The operator in (5) corresponds to
a pair of nucleons in an nl orbit coupled to orbital angular
momentum L � 0, isospin T, and spin S.

The shell-model matrix element (5) can be related to a
boson matrix element. The boson is associated to a corre-
lated fermion pair which implies the correspondence

byTS()
X
nl

�nl�a
y
nl1=21=2 � aynl1=21=2�

�0TS� 
 STS� ; (6)
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with �nl certain coefficients. For example, in the limit of
degenerate single-particle energies, they are �nl �

������
�l

p
with �l 
 2l� 1. As such, the boson matrix element
corresponds to the fermion matrix element of the specific
linear combination given in (6). To find the matrix ele-
ments of the individual nl pairs, needed in (4), we use the
following scaling property:

�TS
nl �

������
�l

p
P
n0l0
�n0l0

�������
�l0

p h�B k STS� k �Ai: (7)

This can be shown to be exactly valid for the transfer of a
correlated pair with �nl �

������
�l

p
between the ground states

�A and �B in the SU(4) limit of the SO(8) model. The
property (7) then follows from a generalization to arbitrary
coefficients �nl.

The boson transfer operator must be corrected with a
Pauli factor which is obtained by requiring identical matrix
elements in boson and fermion spaces [3]. For the present
purpose, we associate the U�6� � SU�4� limit of the L � 0
IBM-4 with the SO�8� � SU�4� limit of the neutron-proton
pairing model. In both cases the matrix elements can be
obtained analytically with use of known U�6� � SU�4� and
SO�8� � SU�4� isoscalar factors [17,18]. From this analy-
sis one concludes that the boson transfer operator which, in
the SU(4) limit exactly reproduces the fermionic ground-
to-ground transition between N � Z nuclei, is

even-even ! odd-odd:

�����������������������������������
1

2
�2�� N̂b � 1�

s
byTS;

odd-odd ! even-even:

�����������������������������������
1

2
�2�� N̂b � 6�

s
byTS;

(8)

valid for Nb � 2�, where � 

P

l�l is the shell
degeneracy.

In this derivation, care has been taken to relate the
matrix element of byTS to the shell-model amplitude which
enters the deuteron-transfer amplitude (3). This requires
the application of the Talmi-Moshinsky transformation, the
use of the scaling property (7), and the inclusion of the
spin-isospin Pauli factors. Since the transfer intensity be-
tween the states j�Nb��ATASAi and j�Nb � 1��BTBSBi
(where �A and �B are additional labels) is proportional
to the square of the matrix element of byTS, we shall study
the quantity

C2
T 
 h�Nb � 1��BTBSB k byTS k �Nb��ATASAi

2; (9)

where, for convenience, the matrix element is reduced in
isospin and spin.

The properties of the Hamiltonian (2) have been studied
previously [9]. The ground state of even-even nuclei (Nb

even) has T � 0 while the ground state of an odd-odd
nucleus has T � 0 for b=a < 0 and T � 1 for b=a > 0;
b=a � 0 yields degeneracy between the lowest T � 0 and
2-2
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T � 1 states and corresponds to the SU(4) limit. Thus by
varying the ratio b=a one can study the qualitative features
of deuteron transfer with changing T � 0 versus T � 1
pairing correlations. The result for N � Z nuclei is shown
in Fig. 1.

Deuteron transfer at the N � Z line has unique proper-
ties since, starting from an even-even N � Z nucleus with
T � 0 ground state, one finds two states excited in the
low-energy region of the odd-odd nucleus corresponding
to T � 0 and T � 1 transfer, respectively. Not surpris-
ingly, the two states are equally excited in the SU(4) limit
(b=a � 0) while otherwise the sign of b=a determines
which of the two transfer intensities is strongest. It is
evident from Fig. 1 that the transfer intensities change
rapidly around the SU(4) limit (which corresponds to a
phase-transitional point in the limit Nb ! 1) but saturate
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FIG. 1 (color online). The T � 0 and T � 1 deuteron-transfer
intensities C2

T between N � Z nuclei with boson numbers Nb

and Nb � 1 as a function of b=a between the lowest T � 0 and
T � 1 eigenstates of the Hamiltonian (2). In the upper part the
entire surface is shown for 1 � Nb � 10 and �10 � b=a � 10.
In the middle and lower parts the even-even to odd-odd and odd-
odd to even-even intensities are displayed for specific values of
Nb. In odd-odd nuclei the T � 0 and T � 1 states are close in
energy and the figure shows the isospin-allowed intensity to or
from both, i.e., to/from T � 0 for C2

0 and to/from T � 1 for C2
1.

The dashed line indicates the value of b=a obtained from nuclear
masses in the first half of the 28–50 shell.

16250
quickly at large values of jb=aj. Simple predictions for the
transfer intensities in the three limits b=a � 0, b=a � �1,
and b=a � �1 are shown in Table I.

What are appropriate values of b=a in actual nuclei?
Qualitative arguments can give an idea of the sign. The
physical origin of SU(4) symmetry is the attractive short-
range interaction between nucleons which favors spatially
symmetric states. Because of the overall antisymmetry of
the nuclear wave function this leads to ground states with
least symmetry in isospin-spin SU(4) and hence to a > 0.
On the other hand, the operator C1�US�3�� arises from a
mapping of the spin-orbit term vso

P
i
�li � �si of the shell

model into the IBM-4 space. In fact, it can be shown [13]
that a pairing Hamiltonian with a (one-body) spin-orbit
term maps into a combination of C2�SU�4��, C1�UT�3��,
and C1�US�3�� with additional Nb-dependent terms. Since
C1�UT�3�� � C1�US�3�� � Nb, one of the linear operators
can be eliminated, and, if C1�US�3�� is kept, its strength is
approximately given by 4l�l� 1�v2

so=3g� where �g is the
strength of the pairing interaction (g > 0), � is the shell
degeneracy, and l is the orbital angular momentum of the
two fermions that make up a boson. On the basis of this
argument one thus expects b > 0.

A more quantitative estimate can be given based on
nuclear masses. The L � 0 IBM-4 can be used to calculate
binding energies of N � Z nuclei [19]. The proposed
Hamiltonian contains, in addition to (2) and linear and
quadratic terms in Nb, a T�T � 1� term which is known
to be of importance for the nuclear symmetry energy:

H � H0 � c1C1�U�6�� � c2C2�U�6�� � dC2�SOT�3��:

(10)

Since the additional three terms are diagonal in both bases
(1), they leave the wave functions unaltered which still
only depend on the ratio b=a. The results for binding
energies in nuclei in the first half of the 28–50 shell—a
mass region currently of particular interest for deuteron-
transfer experiments—are shown in Fig. 2.
TABLE I. Predicted deuteron-transfer intensities C2
T between

even-even (EE) and odd-odd (OO) N � Z nuclei in the SU(4)
(b=a � 0) and UT�3� � US�3� (jb=aj � 1) limits.

Limit Reaction C2
T�0 C2

T�1

b=a � 0 EE ! OOT�0
1
2 �Nb � 6� 0

EE ! OOT�1 0 1
2 �Nb � 6�

OOT�0 ! EE 1
2 �Nb � 1� 0

OOT�1 ! EE 0 1
2 �Nb � 1�

b=a � �1 EE ! OOT�0 Nb � 3 0
EE ! OOT�1 0 3

OOT�0 ! EE Nb � 1 0

b=a � �1 EE ! OOT�0 3 0
EE ! OOT�1 0 Nb � 3

OOT�1 ! EE 0 Nb � 1
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FIG. 2 (color online). Binding energies (in MeV) of even-even
(all N; Z) and odd-odd (only N � Z) nuclei in the first half of the
28–50 shell. All binding energies are relative to 56Ni. The data
are taken from Ref. [23]. The calculated values are obtained
from (10) with a � 0:238, b � 1:261, c1 � �23:466, c2 �
�0:083, and d � 0:765, in MeV.
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Note that the study of Ref. [19] has now been extended
to include even-even N � Z nuclei. The root-mean-square
deviation is 0.306 MeV (0.254 MeV if experimental errors
are included via the method of maximizing the likelihood
function). The fit to the nuclear masses yields the value
b=a � 5, confirming our earlier qualitative arguments that
the ratio should be positive. Even if there is considerable
uncertainty in the value of this ratio, the fact that the
deuteron-transfer intensities quickly saturate for large
b=a leads to a clear prediction of this analysis: the favored
deuteron-transfer mode in this mass region has T � 1
rather than T � 0 character. Some appreciable strength
of the latter can only be expected in the transfer from
an even-even to an (excited) T � 0 state of an odd-odd
nucleus.

The N � Z line in the 28–50 neutron and proton shells
represents the ideal region in which to search experimen-
tally for the competition between T � 0 and T � 1 pair-
ing; the valence space is sufficiently large to allow the
development of collective features and the lowest states
of each isospin lie close to each other in energy. Moreover,
it was pointed out some time ago [20], following studies of
lighter nuclei in a Hartree-Fock-Bogoliubov framework,
that a dominance of T � 0 over the T � 1 mode can only
be expected to occur in N � Z nuclei; the addition of only
two neutrons is sufficient to reestablish the normal, like-
nucleon pairing encountered throughout the rest of the
nuclear chart. Thus the limitation, pointed out earlier,
that the L � 0 IBM-4 is not applicable to odd-odd
N � Z nuclei does not pose a serious problem in the
current study.

In considering future experiments to determine the rela-
tive contributions of the different pairing modes on the
N � Z line, it is important to recall that the N � Z nuclei
are located increasingly far from stability as mass increases
so that the study of deuteron transfer mandates the use of
radioactive beams and inverse kinematics, either at classi-
cal transfer energies or through knockout reactions at the
16250
higher energies available at fragmentation facilities. The
possibility to extract two-particle spectroscopic factors
from the latter method has recently been demonstrated
for the first time for two-proton transfer [21,22]. The
extraction of spectroscopic factors describing deuteron
transfer poses particular additional problems in either ap-
proach and will require an enhancement in both the beam
intensity and experimental sensitivity currently available in
this type of study to achieve meaningful results. Never-
theless, the new generation of exotic beam accelerators
currently proposed or under construction promises just
such a degree of enhancement and the study presented
here provides a first prediction of what may be observed
in this new class of experiments.
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