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Connecting Black Holes and Black Strings
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Static vacuum spacetimes with one compact dimension include black holes with localized horizons but
also uniform and nonuniform black strings where the horizon wraps over the compact dimension. We
present new numerical solutions for these localized black holes in 5 and 6 dimensions. Combined with
previous 6D nonuniform string results, these provide evidence that the black hole and nonuniform string
branches join at a topology changing solution.
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Introduction and summary.—The task of this Letter is to
resolve the structure of static vacuum solutions of Kaluza-
Klein theory, namely, pure gravity compactified on a circle.
Let us firstly motivate our interests in this problem.

Many scenarios in string theory have extra dimensions
large enough that they may be described geometrically
[1,2]. In such models it is important to understand the
behavior and types of black hole solutions, and, in particu-
lar, whether there are potentially new signals from this
physics [3].

The problem is also interesting as it is connected by
holography to the phase structure of large Nc super Yang-
Mills theory, compactified on a circle, at strong ’t Hooft
coupling [4–9]. Since strong coupling results are scarce for
this field theory, gravity provides the only window into this
regime. Furthermore, the same phase structure predicted
by gravity at strong coupling appears to persist to weak
coupling [8].

Lastly, this Letter provides evidence that for Kaluza-
Klein theory the 3 branches of solutions—the localized
black holes, uniform, and nonuniform strings—are con-
nected in an elegant way, initially conjectured by Kol who
postulated the problem is controlled by one relevant order
parameter [10]. Learning more about this Morse-theory-
inspired approach may shed light on the new and exotic
phenomena found in higher dimensions [11–13].

For small masses, localized black holes (BH) should
look like Schwarzschild solutions. Increasing their mass
they deform as they feel the compact circle [14,15]. The
key question is then whether there is a maximum size for
these solutions beyond which they no longer ‘‘fit.’’

In d spacetime dimensions, with d � 5, uniform string
(US) solutions exist. These are direct products of (d� 1)
dimensional Schwarzschild with the circle, and are the
only uncharged solutions with a horizon that is asymptoti-
cally R1;d�2 � S1 which has a simple analytic form (except
for bubble spacetimes which we do not consider here [16]).

The nonuniform strings (NUS) were discovered when
Gregory and Laflamme showed that for a given circle size,
uniform strings below a critical mass are linearly unstable
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[17,18]. At the critical point there is a static mode breaking
translation invariance on the circle. Motivated by dynami-
cal considerations [19], Gubser showed this mode remains
static to all orders in perturbation theory [20].

Kol conjectured [10] that the ‘‘waist’’ of the nonuniform
string would shrink to nothing, locally forming a cone
geometry, which connected to the black hole branch by
resolving the cone to change the horizon topology (see also
[21]). Elliptic numerical methods were used to construct
the nonuniform strings in 6D [22,23] and the cone geome-
try was seen to emerge for the most nonuniform solutions
[24]. These methods have recently been applied to con-
struct the black hole solutions in 5D and 6D, and thus in
principle we can test Kol’s conjecture from the ‘‘other
side’’ [25,26].

Here we present new numerical solutions for the 5D and
6D localized black holes which significantly improve on
the previous works [25,26] (see footnote [27]). In both
dimensions they behave similarly, and we find a maximum
size localized black hole that can ‘‘fit’’ in the circle dimen-
sion. The 6D results provide evidence that the nonuniform
and black hole branches do indeed merge at a topology
changing solution.

Method.—Both the nonuniform strings and black holes
are static axisymmetric geometries that can be written in
the form,

ds2 � �e2Adt2 � e2B�dr2 � dz2� � e2Cr2d�2
d�3; (1)

where A, B, C are functions of r, z. We take these to vanish
at large radial coordinate r, and hence the geometry is
asymptotically R1;d�2 � S1. The circle coordinate z has
length L asymptotically. We then employ a numerical
method developed in [22,28,29] which uses relaxation
techniques to solve for A, B, C while ensuring all the
Einstein equations are satisfied. The reader is referred to
[22] for details of the procedure [30].

Following [32–35], because the solutions are not
asymptotically flat, they are characterized in terms of 2
asymptotic charges: the mass M and a dimensionless ten-
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sion n, which then give a first law, dM � TdS� nMdL=L
where T, S are the black hole temperature and entropy.

In the following plots, we will fix the asymptotic circle
length L � 1 for all solutions shown, and then use the
quantity n to characterize the solutions. For small black
holes n ’ 0, and for uniform strings n � 1=�d� 3�. For
convenience we normalize the thermodynamic quantities
T, S, M, n by their value for the critical uniform string,
Tcrit, Scrit, Mcrit, ncrit.

The most error prone part of the numerical calculation is
extracting the asymptotic form of the metric in order to
compute M, n. Particularly difficult is n as it is constructed
from the difference of two relatively large quantities [25].
Here we compute both n and M using the first law and
Smarr formula from T and S, which are conveniently
determined from the metric near the horizon.

6D Results.—We now discuss the behavior of 6D local-
ized black holes, and the evidence that they join to the
nonuniform branch. First we consider the geometry of the
horizon.

We may embed the spatial horizon geometry as a surface
of revolution in 5D Euclidean space. This is illustrated for
several solutions in Fig. 1. The intrinsic geometry of the
embedded surface is the same as that of the spatial sections
of the 6D horizons. Note that for the black holes we also
include the exposed rotational symmetry axis in the em-
FIG. 1 (color online). Embeddings of the spatial horizon ge-
ometry of various 6D BHs and NUSs in 5D Euclidean space
(suitably projected onto the page). For BH solutions we include
the exposed symmetry axis in the embedding. The red vertical
lines are to be periodically identified, generating the compact
dimension.
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bedding plots. The Euclidean coordinate along the surface
of revolution, X, should be thought of as periodic with
�Xmax <X < Xmax being the fundamental domain plotted.
Then Xmax gives a coordinate invariant measure of the
‘‘size’’ of the geometry near the symmetry axis, and we
plot this in Fig. 2.

For nonuniform solutions we may compute the maxi-
mum and minimum radii of the horizon Rmax;min.
Analogously, for the black holes we have Req, the equato-
rial radius of the horizon, and Laxis, the proper length along
the exposed symmetry axis. These are plotted in Fig. 3.

From these graphs we see firstly that for increasing n the
equatorial radius of the black holes reaches a maximum
and then starts to decrease, implying that there is indeed a
maximum size localized solution that can fit. Second, from
the horizon geometry it is plausible that the nonuniform
and black hole branches merge around n=ncrit ’ 0:55,
where the value of Req appears to tend to Rmax, and Xmax

is consistent with an extrapolation that agrees between the
branches for this value of n=ncrit.

Now we consider thermodynamic quantities. In Figs. 4
and 5 we plot the entropy, temperature, and mass of the
solutions against n. Mirroring the behavior of Req, we see
the entropy and mass of the black holes reach a maximum
and then decrease with increasing n. From this thermody-
namic data we again clearly see evidence the branches
merge.

Note that in our previous work [25] constructing the 6D
black holes, the solutions were only found in the regime
where Req and the mass were increasing with n, and hence
it was not clear that the two branches could unify.

For very small masses the localized black holes are
entropically favored, and for very large masses only the
uniform strings exist. In Fig. 6 we plot the entropy against
mass for the 3 branches. We see uniform strings become
entropically favored, for a given mass, at masses above that
of the critical uniform string, but below that of the maxi-
mum mass localized black hole.

Thus we see that the branches appear consistent with
merger at n=ncrit ’ 0:55. Let us now assume that this
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FIG. 2 (color online). Plot of Xmax for 6D NUSs and BHs,
consistent with merger of the branches at n=ncrit ’ 0:55.
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FIG. 5 (color online). Mass against n for 6D solutions. The
highlighting indicates which branch is entropically favored for a
given mass (see Fig. 6).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Req

Laxis

Rmax

Rmin

n/ncrit

FIG. 3 (color online). Plot of horizon geometric quantities for
6D solutions. Branches are consistent with a topology changing
merger where both Laxis and Rmin go to zero, and Req tends to
Rmax. All solutions have L � 1.
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occurs via a conical transition. We can then measure how
far from the transition point the solutions are by estimating
the geometric resolution of the cone. For the nonuniform
strings this is given by the minimal radius of the horizon,
Rmin, which for the most nonuniform string found in [22]
was Rmin ’ 0:08 in our units where L � 1. The resolution
for the black hole is given by the proper distance of
exposed symmetry axis, Laxis. For these 6D solutions the
smallest resolution found was Laxis ’ 0:27. Therefore the
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FIG. 4 (color online). Entropy and temperature for 6D
solutions.
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most nonuniform strings found are still considerably closer
to the assumed transition point than the most extreme
localized black holes found here. For these nonuniform
solutions the emergence of the cone geometry has been
numerically demonstrated [24]. Repeating this for our new
black hole solutions does indeed show an increase in
curvature on the axis consistent with an emerging cone,
but as the solutions are ‘‘further’’ from the transition point,
this increase in curvature is still not large enough to be
clearly distinguished from the background curvature of the
black hole geometry. Thus while our new 6D black hole
data are very suggestive the solution branches merge, they
still cannot confirm that the detailed merger from the black
hole side is via a conical transition. Indeed in Kol’s original
picture [10] we note that the cone may act only as an
approximate local model for the merger, and the detailed
behavior very close to the point where the horizon pinches
off may have a complicated behavior that cannot neces-
sarily be thought of as being smoothly resolvable.
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FIG. 6 (color online). Plot of SM�4=3 against mass for the 6D
solutions. 6D Schwarzschild behavior is S / M4=3 so represents
a horizontal line. We see the localized BHs are entropically
favored for a given mass, for M< 1:7Mcrit. Above this mass the
uniform strings are favored. The NUSs are never dominant.
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FIG. 7 (color online). Mass against n for new 5D localized
BHs. Highlighting indicates entropically favored solution at a
given mass.
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5D Results.—We now briefly discuss the 5D black hole
solutions. All quantities behave in an analogous manner to
their counterparts for the 6D solutions. Here we have
simply plotted the mass against n in Fig. 7. Note the
mass increases past the critical uniform string mass with
increasing n (extending the previous numerical solutions in
5D [26]), reaching a maximum and then decreases, again
presumably to join the nonuniform branch [36].
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