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Universal Programmable Quantum State Discriminator that is Optimal
for Unambiguously Distinguishing between Unknown States
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We construct a device that can unambiguously discriminate between two unknown quantum states. The
unknown states are provided as inputs, or programs, for the program registers, and a third system, which is
guaranteed to be prepared in one of the states stored in the program registers, is fed into the data register of
the device. The device will then, with some probability of success, tell us whether the unknown state in the
data register matches the state stored in the first or the second program register. We show that the optimal
device, i.e., the one that maximizes the probability of success, is universal. It does not depend on the actual
unknown states that we wish to discriminate.
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Given two unknown quantum states, j 1i and j 2i, we
can construct a device that will unambiguously discrimi-
nate between them. If this device is given a system in one
of these two states, it will produce one of three outputs: 1,
2, or 0. If the output is 1, then the input was j 1i; if the
output is 2, then the input was j 2i; and if the output is 0,
which we call failure, then we learn nothing about the
input. The device will not make an error, and it will never
give an output of 2 if the input was j 1i, and vice versa.
This strategy is called unambiguous discrimination. The
input states are not necessarily orthogonal; in fact, they can
be completely arbitrary within the constraint that they are
linearly independent [1]. The cost associated with this
condition is that the probability of receiving the output 0
(failure) is not zero. The minimum value of this probability
for two known and equally likely states is jh 1j 2ij
(Refs. [2–4]).

The actual state-distinguishing device for two known
states depends on the two states, j 1i and j 2i; i.e., these
two states are ‘‘hard wired’’ into the machine. What we
would like to do here is see if we can construct a machine
in which the information about j 1i and j 2i is supplied in
the form of a program. This machine would be capable,
with the correct program, of distinguishing any two quan-
tum states. One such device has been proposed by Dušek
and Bužek [5]. This device distinguishes the two states
cos��=2�j0i � sin��=2�j1i. The angle � is encoded into a
one-qubit program state in a somewhat complicated way.
The performance of this device is good; it does not achieve
the maximum possible success probability for all input
states, but its success probability, averaged over the angle
�, is greater than 90% of the optimal value. In a series of
recent works Fiurášek et al. investigated a closely related
programmable device that can perform a von Neumann
projective measurement in any basis, the basis being speci-
fied by the program. Both deterministic and probabilistic
approaches were explored [6], and experimental versions
of both the state discriminator and the projective measure-
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ment device were realized [7]. Sasaki et al. developed a
related device, which they called a quantum matching
machine [8]. Its input consists of K copies of two equato-
rial qubit states, which are called templates, and N copies
of another equatorial qubit state jfi. The device determines
to which of the two template states jfi is closest. This
device does not employ the unambiguous discrimination
strategy, but optimizes an average score that is related to
the fidelity of the template states and jfi. Programmable
quantum devices to accomplish other tasks have recently
been explored by a number of authors [9–15].

Here we want to construct a programmable state dis-
criminating machine whose program is related in a simple
way to the states j 1i and j 2i that we are trying to
distinguish. A motivation for our problem is that the pro-
gram state may be the result of a previous set of operations
in a quantum information processing device, and it would
be easier to produce a state in which the information about
j 1i and j 2i is encoded in a simple way than one in which
the encoding is more complicated.

We shall, therefore, consider the following problem
which is perhaps the simplest version of a programmable
state discriminator. The program consists of the two qubit
states that we wish to distinguish. In other words, we are
given two qubits: one in the state j 1i and another in the
state j 2i. We have no knowledge of the states j 1i and
j 2i. Then we are given a third qubit that is guaranteed to
be in one of these two program states, and our task is to
determine, as best as we can, in which one. We are allowed
to fail, but not to make a mistake. What is the best proce-
dure to accomplish this?

We shall consider the first two qubits we are given as a
program. They are fed into the program register of some
device, called the programmable state discriminator, and
the third, unknown qubit is fed into the data register of this
device. The device then tells us, with optimal probability of
success, to which of the two program states the unknown
state of the qubit in the data register corresponds. We can
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design such a device by viewing our problem as a task in
measurement optimization. We want to find a measurement
strategy that, with maximal probability of success, will tell
us which one of the two program states, stored in the
program register, matches the unknown state, stored in
the data register. Our measurement is allowed to return
an inconclusive result but never an erroneous one. Thus, it
will be described by a POVM (positive-operator-valued
measure) that will return 1 (the unknown state stored in
the data register matches j 1i), 2 (the unknown state stored
in the data register matches j 2i), or 0 (we do not learn
anything about the unknown state stored in the data
register).

Our task is then reduced to the following measurement
optimization problem. One has two input states

j	in
1 i � j 1iAj 2iBj 1iC; j	in

2 i � j 1iAj 2iBj 2iC;

(1)

where the subscripts A and B refer to the program registers
(A contains j 1i and B contains j 2i), and the subscript C
refers to the data register. Our goal is to unambiguously
distinguish between these inputs, keeping in mind that one
has no knowledge of j 1i and j 2i; i.e., we want to find a
POVM that will accomplish this.

Let the elements of our POVM be 
1, corresponding to
unambiguously detecting j	in

1 i, 
2, corresponding to un-
ambiguously detecting j	in

2 i, and 
0, corresponding to
failure. The probabilities of successfully identifying the
two possible input states are given by

h	in
1 j
1j	

in
1 i � p1h	

in
2 j
2j	

in
2 i � p2; (2)

and the condition of no errors implies that


2j	
in
1 i � 0
1j	

in
2 i � 0: (3)

In addition, because the alternatives represented by the
POVM exhaust all possibilities, we have that

I � 
1 �
2 �
0: (4)

The fact that we know nothing about j 1i and j 2i
means that the only way we can guarantee satisfying the
above conditions is to take advantage of the symmetry
properties of the states, i.e., that j	in

1 i is invariant under
interchange of the first and third qubits, and j	in

2 i is
invariant under interchange of the second and third qubits.
That unknown states can be unambiguously compared with
a nonzero probability of success, using symmetry consid-
erations only, has been first pointed out by Barnett et al.
[16]. In our case, we require that 
1 give zero when acting
on states that are symmetric in qubits B and C, while 
2

give zero when acting on states that are symmetric in qubits
A and C. Defining the antisymmetric states for the corre-
sponding pairs of qubits,
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j �	�
BC i �

1���
2

p �j0iBj1iC 	 j1iBj0iC�;

j �	�
AC i �

1���
2

p �j0iAj1iC 	 j1iAj0iC�;

(5)

we introduce the projectors to the antisymmetric subspaces
of the corresponding qubits as

Pas
BC � j �	�

BC ih 
�	�
BC j; Pas

AC � j �	�
AC ih 

�	�
AC j: (6)

We can now take for 
1 and 
2 the operators


1 � c1IA � P
as
BC; 
2 � c2IB � P

as
AC; (7)

where IA and IB are the identity operators on the spaces of
qubits A and B, respectively, and c1 and c2 are as yet
undetermined non-negative real numbers. The no-error
condition dictates that 
1 � QA � Pas

BC and 
2 � QB �
Pas
AC, and it can be shown that the unknown operators QA

and QB can be chosen to be proportional to the identity
[17]. Using the above expressions for 
j, where j � 1; 2 in
Eq. (2), we find that

pj � h	in
j j
jj	

in
j i � cj

1

2
�1	 jh 1j 2ij

2�: (8)

The average probability, P, of successfully determining
which state we have, assuming that the input states occur
with a probability of �1 and �2, respectively, is given by

P � �1p1 � �2p2 �
1

2
��1c1 � �2c2��1	 jh 1j 2ij

2�;

(9)

and we want to maximize this expression subject to the
constraint that 
0 � I 	
1 	
2 is a positive operator.

Let S be the four-dimensional subspace of the entire
eight-dimensional Hilbert space of the qubits A, B, and C,
that is spanned by the vectors j0iAj 

�	�
BC i, j1iAj 

�	�
BC i,

j0iBj 
�	�
AC�i, and j1iBj 

�	�
AC i. In the orthogonal complement

of S, S?, the operator 
0 acts as the identity, so that, in S?,

0 is positive. Therefore, we need to investigate its action
in S. First, let us construct an orthonormal basis for S.
Applying the Gram-Schmidt process to the four vectors,
given above, that span S, we obtain the orthonormal basis

j�1i � j0iAj 
�	�
BC i;

j�2i �
1���
3

p �2j0iBj 
�	�
AC i 	 j0iAj 

�	�
BC i�;

j�3i � j1iAj 
�	�
BC i;

j�4i �
1���
3

p �2j1iBj 
�	�
AC i 	 j1iAj 

�	�
BC i�:

(10)

In this basis, the operator 
0, restricted to the subspace S,
is given by the 4
 4 matrix
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0 �

1	 c1 	
1
4c2 	

��
3

p

4 c2 0 0

	
��
3

p

4 c2 1	 3
4c2 0 0

0 0 1	 c1 	
1
4c2 	

��
3

p

4 c2
0 0 	

��
3

p

4 c2 1	 3
4c2

0
BBBBB@

1
CCCCCA :

(11)

Because of the block diagonal nature of 
0, the character-
istic equation for its eigenvalues, �, is given by the biqua-
dratic equation

��2 	 �2	 c1 	 c2��� 1	 c1 	 c2 �
3

4
c1c2�2 � 0:

(12)

It is easy to obtain the eigenvalues explicitly. For our
purposes, however, the conditions for their nonnegativity
are more useful. These can be read out from the above
equation, yielding

2	 c1 	 c2 � 0; 1	 c1 	 c2 �
3

4
c1c2 � 0: (13)

The second is the stronger of the two conditions. When it is
satisfied the first one is always met but the first one can still
be used to eliminate nonphysical solutions. We can use the
second condition to express c2 in terms of c1,

c2 �
1	 c1

1	 �3=4�c1
: (14)

For maximum probability of success, we chose the equal
sign. Inserting the resulting expression into (9) gives

P �
1

2

�
�1c1 � �2

1	 1c1
1	 �3=4�c1

	
�1	 jh 1j 2ij

2�: (15)

We can easily find c1 � c1;opt where the right-hand side of
this expression is maximum, and using this together with
Eq. (14) we obtain

c1;opt �
2

3

�
2	

������
�2

�1

s 	
c2;opt �

2

3

�
2	

������
�1

�2

s 	
: (16)

Inserting these optimal values into (9) gives

PPOVM �
2

3
�1	

�����������
�1�2

p
��1	 jh 1j 2ij

2� : (17)

This is not the full story, however. The above expression
is valid only when c1;opt and c2;opt are both non-negative.
From Eq. (16) it is easy to see that this holds if

1

5
� �1 ; �2 �

4

5
: (18)

In order to understand what happens outside this interval,
we have to turn our attention to the detection operators.
Using c1;opt and c2;opt in Eq. (7) yields
16050

1;opt �
2

3

�
2	

������
�2

�1

s 	
IA � P

as
BC;


2;opt �
2

3

�
2	

������
�1

�2

s 	
IB � Pas

AC:

(19)

For �1 �
4
5 (and �2 �

1
5 ), 
1;opt � IAPas

BC and 
2;opt � 0.
This structure then remains valid for �1 �

4
5 . In other

words, when the first input dominates the preparation, it
is advantageous to use the full projector that distinguishes
it with maximal probability of success, p1;opt �

1
2 


�1	 jh 1j 2ij
2�, at the expense of sacrificing the second

input completely, p2;opt � 0. These values yield the aver-
age success probability,

P1 �
1

2
�1�1	 jh 1j 2ij

2� ; (20)

for �1 �
4
5 . Conversely, for �2 �

4
5 , 
2;opt � IBPas

AC and

1;opt � 0. This structure then remains valid for �2 �

4
5 .

So, when the second input dominates the preparation it is
advantageous to use the full projector that distinguishes it
with maximal probability of success, p2;opt �

1
2 


�1	 jh 1j 2ij
2�, at the expense of sacrificing the first input

completely, p1;opt � 0. These values yield the average
success probability,

P2 �
1

2
�2�1	 jh 1j 2ij

2� ; (21)

for �2 �
4
5 . As we see, the situation is fully symmetric in

the inputs and a priori probabilities. In the intermediate
range, neither one of the inputs dominates the preparation,
and we want to identify them as best as we can, so the
POVM solution will do the job there. Our findings can be
summarized as follows

Popt �

8<
:
PPOVM if 1

5 � �1 �
4
5 ;

P2 if �1 <
1
5 ;

P1 if 4
5<�1:

(22)

Equation (22) represents our main result. In the inter-
mediate range of the a priori probability, the optimal fail-
ure probability, Eq. (17), is achieved by a generalized
measurement or POVM. Outside this region, for a very
small a priori probability, �1 � 1=5, when the preparation
is dominated by the second input, or a very large a priori
probability, �1 � 4=5, when the preparation is dominated
by the first input, the optimal failure probabilities,
Eqs. (20) and (21), are realized by standard von
Neumann measurements. For very small �1 the optimal
von Neumann measurement is a projection onto the anti-
symmetric subspace of the A and C qubits. For very large
�1 the optimal von Neumann measurement is a projection
onto the antisymmetric subspace of the B and C qubits. At
the boundaries of their respective regions of validity, the
optimal measurements transform into one another contin-
1-3
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FIG. 1. Optimal average success probability, P, vs the a priori
probability, �1. Dashed line, P1 from Eq. (20); dotted line, P2

from Eq. (21); solid line, PPOVM from Eq. (17). For the figure we
replaced 1	 jh 1j 2ij

2 by its average, 1
2 . The optimal P is given

by P2 for �1 < 0:2, by PPOVM for 0:2 � �1 � 0:8, and by P1 for
0:8<�1.
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uously. We also see that the results depend on the overlap
of the unknown states only. If we do not know the states but
we know their overlap, then Eqs. (17), (20), and (21)
immediately give the optimal solutions for this situation.
If we know nothing about the states, not even their overlap,
then we average these expressions over all input states,
which results in the factor, 1	 jh 1j 2ij

2, being replaced
by its average value of 1

2 . Then we have the optimum
average probabilities of success in the various regions.
This situation is depicted in Fig. 1.

In its range of validity the POVM performs better than
any von Neumann measurement that does not introduce
errors. From the figure it also can be read out that the
difference between the performance of the POVM and that
of the von Neumann projective measurements is largest for
�1 � �2 �

1
2 . For these values Pave

POVM � 1
6 while Pave

1 �

Pave
2 � 1

8 , so the POVM represents a 33% improvement
over the standard quantum measurement.

Finally, we want to point out a striking feature of the
programmable state discriminator. Neither the optimal de-
tection operators nor the boundaries for their region of
validity, Eqs. (18) and (19), depend on the unknown states.
Therefore, our device is universal; it will perform opti-
mally for any pair of unknown states. Only the probability
of success for fixed but unknown states will depend on the
overlap of the states.
16050
This POVM, then, provides us with the best procedure
for solving the problem posed at the beginning of this
Letter. It also demonstrates the role played by a priori
information. This device has a smaller success probability
than one designed for a case in which we know one of the
input states [17], which in turn has a smaller success
probability than one designed for the case when we know
both possible input states. While its success probability is
lower than that for a device that distinguishes known states,
the device discussed here is more flexible. All of the
information about the states is carried by a quantum pro-
gram, which means that it works for any two states.
Consequently, it can be used as part of a larger device
that produces quantum states that need to be unambigu-
ously identified.

This research was partially supported by a grant from
the Humboldt Foundation (J. B.) and the National
Science Foundation under Grant No. PHY 0139692
(M. H.). J. B. also acknowledges helpful discussions with
Professor W. Schleich and his group during a visit to the
University of Ulm.
1-4
[1] A. Chefles, Phys. Lett. A 239, 339 (1998).
[2] I. D. Ivanovic, Phys. Lett. A 123, 257 (1987).
[3] D. Dieks, Phys. Lett. A 126, 303 (1988).
[4] A. Peres, Phys. Lett. A 128, 19 (1988).
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