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Metastability for Markov Processes with Detailed Balance
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We present a definition for metastable states applicable to arbitrary finite state Markov processes
satisfying detailed balance. In particular, we identify a crucial condition that distinguishes metastable
states from other slow decaying modes and which allows us to show that our definition has several
desirable properties similar to those postulated in the restricted ensemble approach. The intuitive physical
meaning of this condition is simply that the total equilibrium probability of finding the system in the
metastable state is negligible.
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Ever since the work of Gibbs, equilibrium statistical
mechanics has rested on a secure theoretical foundation.
This is due to the fact that we know the probability distri-
bution describing the statistical properties of these systems.
In nonequilibrium phenomena, to which metastability be-
longs, this is far from being the case in general. For the
special case of metastability, however, it has been argued
[1] that a description in terms of equilibrium states ought to
be possible. In Ref. [1], this was done via analytic continu-
ation techniques. In Ref. [2], an altogether different ap-
proach was suggested leading to similar conclusions: there
it was argued that, due to the peculiar nature of metastable
systems, it should be possible to define a metastable state
by considering it as an equilibrium system on a restricted
set of configurations. Significant progress in this direction
has been realized by Davies [3,4]. In this Letter, following
an earlier Letter [5], we take a stochastic process approach
to the problem of metastability. We consider systems in
which the dynamics of the system is given by a Markov
process obeying detailed balance, and that are character-
ized by having a very slow eigenmode. Under certain
conditions, which we specify later, we can give a precise
definition of the restricted ‘‘metastable region’’ of the
phase space in terms of the slow eigenmode. We then prove
that, under these conditions, a system will always relax
rapidly to either equilibrium or to a long-lasting pseudoe-
quilibrium state in the metastable region, and, finally, we
show that the probability distribution describing this pseu-
doequilibrium state is proportional to the equilibrium dis-
tribution restricted to the metastable subspace.

The phenomenon of metastability may be described
informally as follows (see [2] for a much fuller discussion
along similar lines): A system is said to be in a metastable
state if, upon starting the system in a certain subset of
initial conditions, it remains for a very long time in this
limited subset, which has negligible measure in equilib-
rium. The requirement that the time during which the
system remains in a metastable state be ‘‘large’’ means
simply that it is sufficient to allow the system to relax to
some kind of pseudoequilibrium state. Further, this subset
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is macroscopically distinct from the equilibrium state.
Also, the return to equilibrium from a metastable state
usually occurs in an abrupt fashion; i.e., the macroscopic
variables do not change slowly from their metastable val-
ues to their equilibrium values, but rather they remain
essentially constant and suddenly relax to their equilibrium
value, by some relatively quick relaxation mechanism.
This occurs in almost all systems in which an abrupt (first
order) transition from one phase to another takes place.
Indeed, near the coexistence curve of the two phases, it is
usually possible to prepare a state of the unstable phase in
such a way that it persists for a very long time: supercooled
or superheated liquids are well-known examples. In many
cases, such systems, although quite far from equilibrium,
can be treated as if they were thermodynamically stable
systems. This Letter attempts to present a reason for this
surprising fact.

The results presented in this work are derived for arbi-
trary Markov processes satisfying certain quite general
conditions. However, the typical systems we have in
mind are models such as the finite Ising or Potts models
in d � 2 dimensions with arbitrary short-range interactions
with either Glauber or Kawasaki dynamics; such models
can display a broad range of first order phase transitions,
and it is well known that they usually show the typical
metastable behavior associated with such transitions [6,7].
Furthermore, these systems can be used to model a large
variety of physical systems beyond the ferromagnets they
were originally meant to describe; thus the Ising model has
often been interpreted as a lattice gas model, capable of
giving a qualitative description of the liquid gas transition.
Similarly, structural transitions in alloys can be modeled by
appropriate spin models. In all these physical systems,
metastability is in fact routinely observed. Deriving
Markovian descriptions from a microscopic picture is not
an easy task, but we shall not address this question here; we
shall merely assume such a description to be adequate and
attempt to define metastability within this framework.

The Glauber or Kawasaki dynamics mentioned above
define Markov chains on the set of all spin configurations.
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They are ergodic and acyclic, and they satisfy detailed
balance with respect to the Gibbs measure [8], which are
the generic features we will impose on our system.

We begin by setting up a general framework applicable
to a large variety of Markov processes: Given a finite set �
of elements �, we consider a Markov chain having tran-
sition probabilities W�!�0 . We are interested in describing
the behavior of a system that starts off at a given initial
position and then jumps around � at rates given by W�!�0 .
Thus, if we define P��; t� to be the probability to encounter
the system at time t in the configuration �, this probability
obeys the master equation

@P
@t

��; t� �
X
�0

�W�0!�P��0; t� �W�!�0P��; t�	;


 LP��; t�; (1)

where L is a linear operator on the space of all vectors
P��; t�. Under very general conditions (namely, ergodicity
and aperiodicity; see [8]), which are usually satisfied in the
systems of interest [9], the probability distribution P��; t�
approaches a unique equilibrium distribution P0��� as t!
1. We will restrict our attention to the cases in which the
rates obey detailed balance with respect to the equilibrium
distribution [8]:

W�!�0P0��� � W�0!�P0��
0�: (2)

Under these conditions, a scalar product of two vectors
���� and  ��� can be defined as

��; � 

X
�

���� ���
P0���

; (3)

under which the operator L is self-adjoint [8]. Since the
underlying vector space is finite dimensional, it then fol-
lows that there is a complete orthonormal set of eigenvec-
tors Pn with eigenvalues ��n, where the �n are by
definition arranged in increasing order. The equilibrium
distribution is the eigenvector with �0 � 0, and all other
�n are strictly positive.

Using the orthonormality of the Pn, we find
X
�

Pn��� � �n;0; (4)

implying that P0��� is normalized and that adding to it
arbitrary multiples of Pn���, when n � 1, does not alter
this normalization.

From the completeness property of the eigenvectors
follows

��;�0
�

X1
n�0

Pn���Pn��0�

P0��0�
: (5)

This equation leads to a formal expression for the proba-
bility of going from �0 to � in time t:
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P��; t;�0; 0� � P0��� �
X1
n�1

Pn���Pn��0�

P0��0�
e��nt: (6)

We now turn to the characterization of a metastable state
within the general setting outlined above. In view of the
informal description of metastability sketched in the in-
troduction, it is clear that, if any behavior different from
equilibrium should occur over a large time scale, at least
one of the �n must be close to zero. However, it should be
emphasized that this is by no means sufficient. For ex-
ample, any diffusive system of sufficiently large size l will
have relaxation rates tending to zero as D=l2, where D is
the diffusion constant. One of the main points of this Letter
is to state a condition distinguishing a true metastable state
from merely a low-lying eigenvalue of L, which corre-
sponds, say, to a slow relaxation mode within equilibrium.

For clarity, we assume that �1  �n for all n � 2,
which also explicitly excludes systems with many meta-
stable states. Systems with a few metastable states present
some technical difficulties, such as the possibility that a
metastable state might be able to reach equilibrium only by
passing through another metastable state, but are presum-
ably similar to the case we treat here. On the other hand,
systems with a very large number of metastable states, such
as glasses or spin glasses, do not satisfy the simple sepa-
ration of time scales we are assuming here. An extension of
our approach to such systems presents considerable
difficulties.

Now consider a process evolving from the initial condi-
tion �0. Then, following (6), in the relevant time range
��1

2  t ��1
1 , one finds that the configuration � is

occupied with the following (time-independent) probabil-
ity:

P��� � P0��� �
P1��0�

P0��0�
P1���: (7)

Note that, due to (4), this is normalized. It is also positive
everywhere (except perhaps in some places where it may
assume exponentially small negative values).

This focuses our attention on the value P1��0�=P0��0�,
which characterizes the nature of the initial condition. This
quantity will be central to understanding the conditions
under which the initial condition can rightly be called
metastable and the resulting probability distribution given
by (7) can be identified with that of a metastable state. Let
us be more specific: In what follows, we denote
P1���=P0��� by C���, and by C the maximum value of
C���. Next we define the two sets �m and �eq as

�m :�
�
�:
C
2
�
P1���
P0���

� C
�
; (8)

and �eq is defined as the complement of �m. The choice of
the factor of 1=2 to define the lower bound onC��� in (8) is
a matter of convention. We will show that, given the
previous scenario, the system will have a metastable state,
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in the sense discussed in the introduction, ifX
�2�m

P0���  1; (9)

i.e., that the probability of being found in �m in equilibrium
is negligibly small. From a physical point of view, this is
the crucial assumption, as it distinguishes metastable states
from other slow decaying states. We shall show that the
consequences that follow from (9) give rise to a behavior
that can be identified as metastability and allow us to
identify �m with the metastable region. In particular, the
main properties of the restricted state approach to the
statistical description of metastable states can be derived.

Specifically, we will show that systems in which (9)
holds have the following properties: (i) The probability
that a state evolving from an initial condition �0, for which
C��0� � C, leaves �m in a time less than t is of order �1t.
This justifies identifying such a state as at least a very
persistent one. From this result it also follows thatX

�2�eq

�P0��� � CP1���	  1: (10)

From this inequality and the positivity properties discussed
above, we conclude that

P1��� � �C�1P0���; � 2 �eq: (11)

(ii) The probability that a state is found in �eq after a time
of order ��1

2 , evolving from an initial condition �0 such
that C��0� � �1� p�C, is p. From this we conclude that,
after a time of order ��1

2 has elapsed, the system will
either find itself in a state withC��� � C (metastable state)
or it will be in a state of equilibrium, for which C��� � 0.
These results are important because they indicate that the
systems that ‘‘relax’’ to a metastable state do so quickly,
and once they are in the metastable state, they can be
described by the probability distribution

P��� � P0��� � CP1���: (12)

(iii) If we define a new process in which all transition rates
connecting the metastable region �m defined by (8) to �eq
are set equal to zero, we obtain another Markov process,
also satisfying detailed balance with respect to the restric-
tion of P0��� to �m. We then show that this process is close
to the original physical process, in the sense that the
difference between the probabilities of reaching the same
set X from the same initial conditions �0 is of order �1t, if
C��0� � C. This result leads to

P1��� � CP0���; � 2 �m; (13)

and

2 lnC � ln
X

�2�eq

P0��� � ln
X
�2�m

P0���; (14)

which is interpreted in a natural way as the free energy
difference between the two phases.
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To show how these results come about, note the follow-
ing basic property:

E�e�1t0C���t0��j��t�	 � e�1tC���t�� �t < t0�; (15)

where ��t� denotes a path of the Markov process defined
by (1) and E denotes the conditional expectation value.
This relation is easily verified by a straightforward com-
putation and means that e�1tC���t�� is a martingale [8].
Let us now take T to be the random time defined by the first
arrival of the path ��t� to �eq. T is then a stopping time [8].
We define � � min�t; T�; it then follows from (15) using
standard theorems [8] that

E�e�1�C������	 � C��0�; (16)

where �0 is the initial condition. Note that � depends on
the behavior of the path ��t� so that (16) does not follow
from (15) by substitution. We first choose �0 so that C��0�
is equal to the maximum possible value C. Noting that if
T < t then C���T�� � C=2 and e�1T < e�1t, we can bound
the left-hand side of (16) from above:

C � E�e�1�C������	 � Ce�1t
�
1�

1

2
Prob�T < t�

�
; (17)

from which follows

Prob �T < t� � 2�1� e��1t� � O��1t�: (18)

This is a basic result that confirms that, for times such that
�1t 1, the probability that the process leaves �m is
negligible. This leads immediately to our first important
result, namely, Eq. (10). Indeed, the left-hand side of (10)
expresses the probability that the system has reached �eq
from an initial state having C���0�� � C in a short time t
(though larger than ��1

2 ) and hence is, by our previous
arguments, negligible. However, the result expressed in
(18) is limited so far to a specific set of initial conditions,
namely, those which have the maximal value of C���.

We now need to show that if an arbitrary initial condition
remains in �m for times larger than ��1

2 , then it is very
probable that it will behave similarly to the initial condi-
tion��0� havingC���0�� � C. This is essential if we wish to
argue that the states which form the metastable phase are
macroscopically equivalent. For this we first need an in-
termediate result: Consider an initial condition ��p� such
that C���p�� equals �1� p�C. The probability that this
initial condition winds up in �eq after a time t has elapsed
is close to p if ��1

1 � t� ��1
2 . Indeed, defining P�out; t�

for this initial condition as P�out; t� �P
�2�eq

P��; t;��p�; 0�, then, in the relevant time range,

P�out; t� �
X

�2�eq

�P0��� � �1� p�CP1���	 � p; (19)

where we have combined our basic assumption (9) and the
result (10). Now let us define
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F�p� 

X

C�����1�p�C

�P0��� � CP1���	: (20)

We show that F�p�  1; indeed, F�p� represents the
probability that a system starting at a �0 with C��0� � C
arrives at a � satisfying C��� � �1� p�C at some fixed
time ��1

2  t0  ��1
1 . If this ever happens, the proba-

bility that the system will afterwards reach �eq within a
time of order ��1

2 is approximately equal to or greater than
p, as follows from (19). But this would imply that a system
originally satisfying C��0� � C would have nucleated in a
time much less than ��1

1 , which has a negligible proba-
bility. Therefore the probability F�p� must be negligibly
small.

By the same argument, but now using the fact that the
probability for a state which starts in �eq to reach �m in a
short time is also negligible, we conclude that the support
of P0��� is concentrated on states for which C��� � 0.
This time consider

G�p� 

X

�1�p�C�C���

P0���; (21)

and, upon using our basic hypothesis (9), we obtain that
G�p�  1 for p < 1. In other words, if (9) holds when �m
is defined by the inequalities (8), a similar claim can be
shown when the prefactor 1=2 is replaced by essentially
any other number between 0 and 1.

The picture that emerges then is that, after a relatively
short transient time (namely, t >��1

2 ), the system will be
found only in states � for whichC��� � 0 (equilibrium) or
C��� � C (metastability), independently of the initial
condition.

Let us now show how a Markov process corresponding
to a restricted ensemble can actually be introduced and be
shown to remain close to the original Markov process on
time scales shorter than ��1

1 . To this end, define the
following restricted transition rates:

WR
�0!� �

�
W�0!� �;�0 2 �m or �;�0 2 �eq
0 otherwise:

(22)

Since P0��� satisfies detailed balance in the original pro-
cess, it is still the equilibrium distribution for this restricted
process. But the system is no longer irreducible and there-
fore P0��� is not the unique stationary distribution. Indeed,
PR1 ��� defined by

PR1 ��� �
�
C0P0��� � 2 �m
S0P0��� � 2 �eq

(23)

is stationary for any constants C0 and S0. In particular, we
choose these constants so that ��P

R
1 ��� � 0 and

�PR1 ; P
R
1 � � 1 so as to have a correspondence with P0 and

P1 of the physical system. This implies
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C0 �

���eqP0���

��mP0���

�
1=2
; S0 � �1=C0: (24)

It should be noted that, given our assumption (9), we will
have C0 � 1, as might have been expected intuitively. Of
course, it is now tempting to identify PR1 with P1. To do
this, we need to show that the process defined by (22),
which we denoted by R (for restricted), remains close to
the original Markov process defined by the rate W�!�0 ,
which we denote by P (for physical). This can be done
rigorously by techniques inspired by the coupling tech-
niques of probability theory and will be discussed in
greater detail in [10]. Here we restrict ourselves to the
following argument: Any path connecting two conditions
� and �0 in time t has equal probability to occur in either
process, except if it crosses the boundary between �m and
�eq. However, such crossings are very unlikely for the
range of times t �1 under consideration, so that the
two processes are unlikely to differ. From this, it can be
shown that the state PR1 is very close to the state P1, from
which the result C � C0 follows.

Summarizing, we have given a formal definition of
metastability and displayed a particular condition which
distinguishes true metastable states from other slow decay-
ing modes. Using this condition, we show that the features
of the restricted state approach to metastability can be
derived in a rigorous way. It would be interesting to see
whether the restriction of detailed balance could be lifted,
so as to be able to define restricted ensembles in other
systems far from equilibrium.
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