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Distributed Delays Stabilize Ecological Feedback Systems
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We consider the effect of distributed delays in predator-prey models and ecological food webs. Whereas
the occurrence of delays in population dynamics is usually regarded a destabilizing factor leading to the
extinction of species, we here demonstrate complementarily that delay distributions yield larger stability
regimes than single delays. Food webs with distributed delays closely resemble nondelayed systems in
terms of ecological stability measures. Thus, we state that dependence of dynamics on multiple instances
in the past is an important, but so far underestimated, factor for stability in dynamical systems.
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Interaction delays occur frequently in biological feed-
back systems, for example, in sensorimotor control [1],
dynamic diseases [2], neural networks [3], and population
ecology [4,5]. Here, they comprise effects such as retarded
reproduction due to hatching periods, duration of preg-
nancy and maturation, slow replacement of food supplies,
and age structure [6]. It is usually assumed that delays in
population dynamics have a destabilizing effect by driving
the system over a stability boundary resulting in oscillatory
or chaotic behavior [7–9], subsequently leading to the
extinction of species.

Most ecological models neglect delays or employ single
time lags [5,10]. However, ecological systems have a
‘‘smoothed’’ behavior for which distributed delays are a
better representation. Existing studies [6,8,11,12] focused
more on issues such as the existence of steady states rather
than on the stabilizing influence of distributions of lags.
Motivated by theoretical work from other fields that state
an influence of the distribution of delay times on the sys-
tem dynamics [13], we here show that distributed delays
increase the stability of general predator-prey systems in-
cluding two-species systems, food chains, and food webs.

Two-species models.—We first study two-species mod-
els to elucidate a mechanism of increased stability of dy-
namical systems for distributed delays. Consider Volterra’s
delay model with prey resource limitation, e.g., [6], de-
scribed by the delay-differential equation

dN1�t�
dt

� r1N1�t�
�
1�

1

K1
N1�t� � f21N2�t�

�
; (1)

dN2�t�
dt

� r2N2�t���1� f12N��N1�t���; (2)

where N1 � 0 and N2 � 0 denote the densities of indi-
viduals in a population of prey and predator, respectively.
r1; r2 are the corresponding reproduction rates satisfying
r1 > r2. K1 is the capacity of the prey population, that is,
the population size for t ! 1 if N2 � 0. The coefficient
f21 quantifies the impact which an individual predator has
05=94(15)=158104(4)$23.00 15810
on the reproduction rate of an individual prey. Conversely,
f12 gives the impact which an individual prey has on the
reproduction rate of a predator; we assume f21 > f12 for
biological reasons. The influence of the prey on the preda-
tor population is assumed to depend on past densities N1

according to the convolution

N��N1�t�� �
Z 1

0
N1�t� t0���t0�dt0 (3)

with a delay kernel ��t� � 0 satisfying the normalization
condition

R
1
0 ��t�dt � 1. Normalization is assumed in or-

der to obtain the same steady states as in the nondelayed
case [11]. Without any delays, the system (1) and (2) shows
globally asymptotically stable behavior, if the equilibrium
exists [14].

The only steady state of the delay system with non-
vanishing densities is given by �N0

1 ; N
0
2� � � 1

f12
; 1
f21




�1� 1
K1f12

�� and is independent of the delay distribution
��t�. It exists for K1f12 > 1. After linearizing the dynamics
about this fixed point and rescaling the time variable [15],
an exponential ansatz for the linear system, z1�t� �
exp��t�, z2�t� � k exp��t� results in the characteristic
equations

k � �
� �; (4)

�2 � 
�� �
Z 1

0
e��t0��t0�dt0 � 0 (5)

for eigenvalues � � �� i!. The coefficients �;
 are
given by

� �
r2
r1

f12
f221

�
f12 �

1

K1

�
; 
 �

1

K1f21

and satisfy the conditions � � 0, 
> 0. We henceforth
assume � � 0 because the case � � 0 yields a trivial
steady state.

The case of a single delay has received a lot of attention
(e.g., [16]). Here, we first demonstrate the effect of distrib-
uted delays by comparing a single discrete delay at lag T,
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FIG. 1. Average delay T� of a gamma distribution which yields
a vanishing real part � of an eigenvalue �. For �v< 2, a single
solution exists resulting from !2

� in (10). For �v > 2, two
solutions resulting from !2

� (solid line) and !2
� (dashed line)

exist. The two solution branches !2
� for �v < 2 and !2

� for
�v> 2 form a continuous function (bold line) with a value at
�v � 2 given by (10). The insets show simulated time courses of
deviations from the steady state for various combinations of �v
and T� illustrating the changes in the system’s dynamics as
manifolds for � � 0 are crossed (abscissas: 50 time units). In
all cases, � � 1, 
 � 1:3.
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�1�t� � ��t� T�, with two discrete delays with an average
lag T but separated by a time interval 2�, �2�t; �� � ���t�
�T � ���� ��t� �T � ����=2 (see also [17] for the case of
two discrete delays). In both cases, the lag T may serve as a
bifurcation parameter. Typically, at some value T�, a su-
percritical Hopf bifurcation occurs; i.e., for T > T�, the
fixed point becomes unstable and is replaced by a stable
limit cycle. In our case of the single delay �1�t�, a decom-
position of (5) in real and imaginary parts and the condition
� � 0 yield the bifurcation value

T�
1 �

1

!
arccos

!2

�
; ! �

���������������������������������������
�

2

2
�

������������������

4

4
� �2

svuut
:

For two discrete delays �2�t�, one obtains a bifurcation
value T�

2��� depending on the parameter �:

T�
2��� �

1

!
arccos

!2

� cos!�
;

! �

�����������������������������������������������������������������������������
�
�2�2 � 
2

2
�

����������������������������������������
��2�2 � 
2�2

4
� �2

svuut
:

In both cases, solutions exist for all �;
 > 0. We first
note that T�

1 � T�
2�� � 0� as required. Furthermore,

it is straightforward to show that dT�
2=d� > 0 for all

�;
; � > 0: The bifurcation occurs at higher average de-
lays as the two delta peaks in �2�t; �� are moved apart.
Hence, the singular delay kernel �1�t� yields the smallest
stability regime of the nontrivial steady state, replacing this
single delay by two discrete delays already increases
stability.

Next, we turn to gamma distributions which are fre-
quently employed in models of population biology,

��t� �
�Tv�

T2=v

��T
2

v �
t�T

2=v��1e��T=v�t; (6)

where T and v denote the mean and the variance, respec-
tively. For v � 0 the gamma distributions � degenerate to a
� function: ��t� � ��t� T�. Equation (5) yields

�2 � 
�� �
�
T
v

�
T2=v 1

��� T
v�

T2=v
� 0; (7)

which is obtained from the fact that the integral in (5) is a
Laplace transform. The dynamics are first studied for the
case of small variances. A Taylor expansion of (7) about
v � 0 yields

�2 � 
�� �e��T
�
1�

�2

2
v
�
� 0: (8)

For fixed variance v, the average delay T� for which the
real part � of the eigenvalue � vanishes is given by

T� �
1

!
arccos

!2

��1� v
2!

2�
(9)

and
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! �

8>>>><>>>>:

��������
!2

�

q
if �v < 2������������

�2

2��
2

q
if �v � 2;��������

!2
�

q
if �v > 2

(10)

where

!2
� �

2��2v� 
2�

�2v2 � 4
�

�������������������������������������������������������
4��2v� 
2�2

��2v2 � 4�2
�

4�2

�2v2 � 4

s
:

(11)

Figure 1 shows the critical values T� as a function of �v.
The upper branch (bold line) is the stability boundary. It is
composed of the solution with !2

� for �v < 2 and !2
� for

�v > 2 and includes the value for �v � 2 from (10).
Indeed, a rather tedious calculation shows that for this
branch dT�=dv � 0 for all �;
 > 0: The stability bound-
ary is pushed to larger values as the variance v of the
gamma distribution increases, resulting in a larger parame-
ter range with asymptotically stable behavior.

Finally, the dynamical system (1) and (2) is studied for
the gamma distribution (6) in the limit of large variance,
v ! 1. Equation (7) simplifies to

�2 � 
�� � � 0:

The resulting steady states are always stable, with an
oscillatory approach for �> 
2=4 and a nonoscillatory
approach for �< 
2=4.

Similar phenomena occur in other predator-prey systems
as well. For example, one can replace (2) by the dynamics
of a polyphagous predator which also survives for N1 � 0:
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FIG. 2. Dynamics of three-species system (13). (a)–(c) Time
courses for three combinations of mean delay T1 and width �1 of
the delay distribution �1, marked in (d). (a) T1 � 0:0, �1 � 0:0;
(b) T1 � 2:5, �1 � 0:0; (c) T1 � 2:5, �1 � 3:0. (d) Mean sur-
vival ratio as a function of T1 and �1. In all cases, K1 � 1, K2 �
0:4, K3 � 0:14, r1 � 5, r2 � 2, r3 � 0:5, T2 � 6, �f12 � 6,
�f21 � 1:6, �f23 � 6, and �f32 � 3. Simulation time: 200 time
units. Sample sizes: 20 food chains. See [19] for details.
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dN2�t�
dt

� r2N2�t�
�
1�

1

K2
N2�t��f12N��N1�t��

�
; (12)

where K2 is the capacity of the predator population. The
system (1) and (12) has a nontrivial steady state at
�N0

1 ; N
0
2� � � K1�f21K1K2

1�f12f21K1K2
; K2�f12K1K2

1�f12f21K1K2
� which exists for

f21K2 < 1. For the delay kernels considered above, the
stability regime of this fixed point also grows as a function
of the variance.

As a result, the study of two-species systems shows that
distributed delays stabilize ecological systems by increas-
ing the stability regime of asymptotically stable steady
states.

Food chains and food webs.—In this paragraph we study
the impact of distributed delays on the stability of larger
ecological systems. From an ecological perspective, it is
usually not sufficient to study local stability properties of
steady states [8]. For example, small-amplitude oscilla-
tions in the species’ densities may also yield stability in
the sense that species do not become extinct. Here we focus
on stability measures associated with the extinction of
species, which are evaluated numerically. Because of the
ecological relevant Allee effect [18], species typically
cannot recover when their densities fall below a certain
threshold (critical depensation). For this reason a species is
considered extinct in our systems when its density is
reduced to less than 1w of its equilibrium density in the
nondelayed case.

First, consider a typical three-species food chain of the
Lotka-Volterra type:

dN1�t�
dt

� r1N1�t�
�
1�

N1�t�
K1

�f21N2�t�
�
;

dN2�t�
dt

� r2N2�t�
�
1�

N2�t�
K2

�f12N�1
�N1�t���f32N3�t�

�
;

dN3�t�
dt

� r3N3�t�
�
1�

N3�t�
K3

�f23N�2
�N2�t��

�
; (13)

where N�i
�Ni�t�� and the delay functions �i�t� (i � 1; 2)

read like (3) and (6), respectively, with given mean Ti and
variance vi � �2

i . Here, the top predator N3 feeds on the
prey N2 which itself feeds on the base prey N1. As a
stability measure, we use the fraction of surviving species,
averaged over random realizations of the food chain.
Figure 2 shows that large species density fluctuations
[demonstrated in Fig. 2(b)] and subsequent extinctions
are prevented by distributed delayed interactions
[Fig. 2(c)], resulting in solutions that resemble those of a
nondelayed system [Fig. 2(a)]. This mechanism makes
species survival more likely, even in presence of large
mean interaction delays [Fig. 2(d)]. Analog results are
obtained for monophagous predators with constant per
capita growth rate. Enhanced stability was also found in
simulations using a Holling type II functional response [5]
(data not shown).
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As a generalization of food chains we study food webs
of the form

dNi�t�
dt

� riNi�t�
�
1�

Ni�t�
Ki

�
XM

j�1;i�j

fjiNj�t�
�
: (14)

The coupling constants fji read

fji �

8><
>:
0 if jj� ij>C
f0Rji if jj� ij � C and j < i;
�1:5f0Rji if jj� ij � C and j > i

(15)

where Rji 2 �0; 1� sets the interaction strength and f0 is a
scaling constant. C denotes the range of interaction in the
web. Species with a higher index prey on those with a
lower index. The interaction terms Nj�t� are modeled as

Nj�t� �
�
Nj�t� if j > iR
1
0 Nj�t� t0��j�t0�dt0 if j < i

; (16)

where again a prey population is instantaneously reduced
by predators, but the increase in predators is delayed. For
reasons of simplicity, �i � � are chosen identical for all
species. We employ two measures for stability: (i) the
survival ratio, that is, the number of surviving species
related to the corresponding number in the nondelayed
case and (ii) the species deletion stability which indicates
the proportion of species that can be removed from the
system without subsequent extinctions in the system [21].
Figure 3 shows both measures as a function of the width �
of the delay kernel for ten-species food webs. We find a
higher stability, hence more robust systems, as � is in-
creased. For large �, the mean survival ratio approaches 1,
indicating that the stability resembles that of the non-
delayed system. Analog results are obtained for a ten-
species food chain (C � 1, data not shown).
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FIG. 3. Mean survival ratio [(MSR); dashed line] and species
deletion stability [(SDS); solid line] for ten-species food webs
(14). S.D. are given by dotted lines. K1;...;10 � 10; 9; 8; . . . ; 1,
r1;...;10 � 5; 4:5; 4; . . . ; 0:5, T � 5, C � 5, and f0 � 0:2.
Simulation time: 100 time units (MSR), 200 time units (SDS).
Sample sizes: 50 networks (MSR), 25 networks (SDS). See [19]
for details.
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To summarize, our findings demonstrate the stabilizing
effect of distributed delays for various types of dynamical
predator-prey systems. A sufficiently great width of the
memory kernel yields linear and nonlinear stability prop-
erties that can otherwise be found only in nondelayed
systems. The necessary variance of the kernel typically
lies in the same range as the corresponding mean of the
distribution, which is in a biologically plausible range. In
contrast, single delay models have a smaller stability re-
gime and often predict oscillatory behavior and the extinc-
tion of species. In addition to other known factors [22],
distributed delays may therefore play a crucial role in the
stability of food webs. Our results apply also to other
dynamical feedback systems. We suggest that more atten-
tion should be drawn to the stabilizing effect of a memory
distribution in delayed dynamical systems.
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