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Marginal Fermi Liquid Theory in the Hubbard Model
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We find marginal-Fermi-liquid- (MFL) like behavior in the Hubbard model on a square lattice for a
range of hole doping and on-site interaction parameter U. Thereby we use a self-consistent projection
operator method. It enables us to compute the momentum and frequency dependence of the single-particle
excitations with high resolution. The Fermi surface is found to be holelike in the underdoped regime and
electronlike in the overdoped regime. Our calculations concern normal state properties of the system.
When a comparison is possible, we find consistency with finite temperature quantum Monte Carlo results.
We also find a discontinuous change with doping concentration from a MFL to a Fermi-liquid behavior
resulting from a collapse of the lower Hubbard band. This renders Luttinger’s theorem inapplicable in the
underdoped regime.
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After the discovery of high-temperature superconduc-
tivity in layered Cu-based perovskites it was found that
those materials exhibit quite unusual properties in the nor-
mal state. For example, in underdoped materials, i.e., for
hole concentrations less than the one leading to the highest
superconducting transition temperature, the temperature-
dependent resistivity is found to be ��T� � T in the normal
state. Also, the nuclear relaxation rate, e.g., of YBa2Cu3O7

has an unusual temperature independent contribution.
Aiming for an explanation of these strong deviations

from a normal metal behavior, Varma et al. [1] devel-
oped the marginal-Fermi-liquid (MFL) theory. This
theory assumes that the frequency ! and temperature T
dependent self-energy 
�!; T� of the electrons behaves
for !> T like Re
�!; T� �! lnj!j and Im
�!; T� �
j!j in contrast to ordinary Fermi-liquid theory where
Re
�!; T� �! and Im
�!; T� �!2 holds. Note that at
zero temperature, the MFL form of the self-energy implies
a diverging effective mass at the Fermi energy. With these
assumptions most of the observed strong deviations from
normal metal behavior could be explained surprisingly
well. However, the microscopic origin of MFL behavior
of the self-energy has remained an open problem.

There have been detailed studies of the two-dimensional
(2D) Hubbard model as a simple model for the high-Tc
cuprates [2] mainly by using advanced numerical tech-
niques. We mention, in particular, the Lanczos method
[2], the quantum Monte Carlo (QMC) [3–5] method, or
calculations based on the dynamical cluster approximation
(DCA) [6].

A perturbation analysis of the half-filled case at T � 0
has shown that in the weak Coulomb interaction limit, a
MFL type of self-energy is obtained [7]. It is due to the van
Hove singularities, which one is dealing with in this par-
ticular case. But we know that electron correlations are
strong in the superconducting cuprates and that at T � 0
the system is an antiferromagnet [2,5,8]. It is also known
that by hole doping the antiferromagnetic correlations are
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rapidly suppressed [2,5,6,9]. Nevertheless MFL behavior
continues to exist in the underdoped regime and the ques-
tion is whether or not it can be explained within the 2D
Hubbard model with fairly strong interactions.

The aim of this Letter is to demonstrate that MFL
behavior can indeed be derived from a doped 2D
Hubbard model on a square lattice at T � 0 and large
on-site interaction. This has become possible with the
help of a recently developed self-consistent projection
operator method (SCPM) [10]. It allows for high resolution
calculations of the self-energy in regards to its momentum
and energy and avoids certain problems previous numeri-
cal calculations have had to face. Our calculations deal
with normal state properties, i.e., in case that the model
yields a superconducting ground state they apply to tem-
peratures larger than the transition temperature.

The SCPM is an extension to the nonlocal case of a
projection operator coherent potential approximation
(CPA) [11]. The latter was shown to be equivalent to the
many-body CPA, the dynamical CPA, as well as the dy-
namical mean-field theory [12]. In the following, we out-
line briefly the main equations which are used before we
present the numerical results demonstrating MFL behavior.
More detailed derivations of the equations are found in the
original literature [10–12].

The starting point is the retarded Green function

Gk�z� �
1

z� 
k ��k�z�
: (1)

Here z � !� i, where  is a positive infinitesimal num-
ber, 
k is the Hartree-Fock one-electron dispersion mea-
sured from the Fermi energy, and �k�z� is the self-energy
calculated from the nonlocal memory matrix Mij accord-
ing to

�k�z� � U2
X
j

Mj0�z� exp�ik � Rj�: (2)

While U denotes the Hubbard on-site interaction, Rj is the
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FIG. 1. Single-particle excitation spectra along high symmetry
line for U � 8 and T � 0 in unit of the nearest-neighbor transfer
integral: electron occupation number n � 0:95. Open circles
with error bars are the QMC results [5] at T � 0:33. The dashed
curves show the Hartree-Fock contribution 
k.
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position vector of site j. We calculate Mij�z� by using an
incremental cluster expansion up to two-sites contributions

Mii�z� � M�i�
ii �z� �

X
l�i

	M�il�
ii �z� �M�i�

ii �z�
; (3)

Mi�j�z� � M�ij�
i�j�z�; (4)

where M�i�
ii �z� and M�ij�

i�j�z� are matrix elements of the

cluster memory matrices M�c�
lm �z� �c � i; ij�. The latter

can be expressed in terms of a ’’screened memory matrix’’
M̂�c��z� and a matrix L�c��z� which describes on-site ex-
citations. It is

M�c�
lm �z� � 	M̂�c��1� L�c� � M̂�c���1
lm: (5)

The matrices have dimensions 1� 1 when c � i and
2� 2 when c � �ij�. Specifically, L�i��z� � U�1�
2hni��i�=	hni��i�1� hni��i�
 while L�ij��z� is a diagonal
matrix with elements L�i��z� and L�j��z�. As usual, hni�i is
the average electron number at site i with spin �. The
screened memory matrix is calculated from renormalized
perturbation theory [13] as

M̂�c�
ij �z� � Aij

�
Z d
d
0d
00 ~��c�

ij �
�~�
�c�
ij �


0�~��c�
ji �


00���
;
0; 
00�

z� 
� 
0 � 
00
;

(6)

with Aii � 	hni��i�1� hni��i�
=	hni��ic�1� hni��ic�


and Ai�j � 1. Here hni�ic �
R
d
~��c�

ii �
�f�
�, with f�
�

denoting Fermi’s distribution. The matrix ~��c�
ij �
� describes

the density of states of a system with an empty site i (or
sites i and j) embedded in a medium with a coherent
potential ~
�z�. This coherent potential is determined self-
consistently from ~
�z� � N�1P

k�k�z�, where N is the
number of sites. Moreover, ��
; 
0; 
00� � f��
� �
f��
0�f�
00� � f�
�f�
0�f��
00�. We want to emphasize
that in Eqs. (2)–(4) all memory matrices with site i sepa-
rated sufficiently far from site j are taken into account until
convergency is obtained.

It follows from Eqs. (5) and (6) that the self-energy
reduces in the limit of small U to second-order perturbation
theory while in the limit of large U the exact result of the
atomic limit is reproduced [10]. Although the above com-
putational scheme looks at first sight somewhat difficult to
handle, this is not really the case. In fact, it allows us to
calculate the self-energy directly without having to do a
numerical analytic continuation or an interpolation in k
space. Therefore, we obtain for it a high resolution in
energy and momentum. In the numerical calculations we
have done, we assumed a paramagnetic ground state since
the antiferromagnetism is suppressed away from half fill-
ing. Whenever possible, we have made comparisons with
15640
quantum QMC results and the agreement was always very
satisfactory.

In Fig. 1 the momentum-dependent excitation spectrum
is shown in the underdoped case for U � 8 (in units of the
nearest-neighbor transfer integral) and T � 0. One notices
an empty upper Hubbard band centered around the M point
and a flat quasiparticle band crossing the Fermi energy 
F.
There is also incoherent spectral density near the � point
resulting from the lower Hubbard band. Also shown are
QMC results for finite temperatures [5]. Results for the
Fermi surface are shown in Fig. 2. For n � 0:95 (under-
doped case), a holelike Fermi surface is obtained. Because
of a collapse of the lower Hubbard band the portion of the
flat band around the X points sinks below the Fermi level.
In the overdoped regime the Fermi surface is electronlike.
It is seen that Luttinger’s theorem [14] does not apply here.
These results agree with the ones obtained from the DCA
[6] and the QMC [5]. They are at variance with Ref. [15]
where it is said that the shape of the Fermi surface is
independent of U [15].

By taking numerical derivatives of �k�z� we have de-
termined the momentum-dependent effective mass mk �
1� @Re�k�0

��=@! in the underdoped regime (see
Fig. 3). To our knowledge, this is something which could
not be done before. For doping less than 2% mk changes
strongly between the minimum value at the M point and
the maximum value at the X point, while for dopings larger
than 2% the momentum dependence of mk is weak with a
maximum at � and not at X as in the underdoped regime.
Most important is the strong dependence of mk near the X
point on the chosen step size ! when the derivative is
taken. This is a clear signature of MFL behavior. Because
of the numerical derivative taken of Re�k at ! � 0, we
obtained a finite value of mk � ln! instead of a diver-
gency. In fact, in the limit of vanishing hole doping (half-
1-2
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FIG. 4. Real part (thin solid line) and imaginary part (solid
line) of the self-energy at the k point ��=2; �=2� and half filling.
Corresponding results of second-order perturbation theory are
shown by dashed lines.
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FIG. 2. Excitation spectra at the Fermi energy showing Fermi
surfaces for n � 0:95 and 0.80. A 80� 80 mesh was used for
calculations in the Brillouin zone.
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filled case) we find a typical MFL behavior of �k�z� for
U � 8 and k � ��=2; �=2� like in the weak interaction
limit. This is shown in Fig. 4 where the two cases are
compared. Because of these features we conclude that for
U � 8 and doping less than 2%, MFL theory applies, while
for doping concentrations of more than 2%, normal Fermi-
liquid theory is valid.

The different nature of the states for doping concentra-
tions h < 0:02 and h > 0:02 is clearly seen in the density
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FIG. 3. Momentum-dependent effective mass mk as a function
of doping concentration. Closed circles: maximum value of mk
at X��; 0� for the hole concentration h � 1� n � 0:02
and � �0; 0� for 0:02 � h; open circles: average mk; closed
triangles: minimum value at M��;��. Numerical derivatives are
taken with respect to energy fraction ! � 0:05. For the maxi-
mum mk, results for ! � 0:005 are also shown (�). The
momentum-independent effective mass in the single-site ap-
proximation (SSA) is shown by the dashed curve.
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of states (DOS) presented in Fig. 5 for U � 8. Consider
first the case h < 0:02. With increasing doping concen-
tration, spectral density is shifted from the lower to the
upper Hubbard band, or more generally to higher energies.
As a consequence, the peak in the DOS remains at 
F; i.e.,
it does not shift for small doping concentrations. There-
fore, the self-energy has to good approximations the same
frequency dependence as for half filling. This is the origin
of MFL behavior. When h > 0:02 the lower Hubbard
band has essentially collapsed and the peak in the DOS
moves away from 
F. In that case, conventional Fermi-
liquid behavior sets in. This occurs in a rather discontinu-
ous way. This is seen from the phase diagram shown in
Fig. 6. The MFL regime with a still existing lower Hubbard
band is separated by a region in which two self-consistent
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FIG. 5. Densities of states (DOS) for the two self-consistent
solutions at n � 0:98. One n � 0:98� (solid curve) is smoothly
connected with the region n � 0:98, while the other n � 0:98�
(dot-dashed curve) with the region n � 0:98. The DOS for n � 1
is also shown (dotted line). Note that  � 0:02 (imaginary part
of energy) was used in the numerical calculations so that the
peak at ! � 0 remains finite for n � 1.
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FIG. 6. Phase diagram showing discontinuity lines. The differ-
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lines are extrapolations.
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solutions are found from the one with a collapsed lower
Hubbard band. One may consider that transition as one
from quasilocalized electrons to fully itinerant ones. Note
that when h < 0:01 the MFL regime is divided into two
regimes. The two solutions found are only slightly different
in the amount of the reduction of the lower Hubbard band.
For fixed value of h the discontinuous behavior of the
self-energy as function of U implies that Luttinger’s theo-
rem [14] is not applicable. For U < 6:5 the MFL behavior
at half filling changes smoothly to a Fermi-liquid state.

In summary, by using the SCPM we could calculate the
zero-temperature self-energy �k�z� for the 2D Hubbard
model with high resolution with respect to ! and k. We
find a MFL-like behavior for quite a large range of hole
doping concentration and U�* 7:3�. We obtain there a
strong momentum dependence of the effective mass. In
cases where a comparison with finite temperature results
[3–6] can be made, the agreement is good. When U > 6:5
a discontinuous change takes place with increasing hole
concentration from more localized electrons in the lower
Hubbard band to fully itinerant ones. In the latter case the
lower Hubbard band is absent. It is precisely the transfer of
spectral density from the lower Hubbard band to higher
15640
energies which results in MFL behavior at low hole
concentrations. Above the upper discontinuity lines
Luttinger’s theorem is not applicable. Very close to half
filling, long-ranged antiferromagnetic correlations are ex-
pected to modify the present results. Those correlations
have been neglected here.
1-4
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