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Supersolid State of Matter
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We prove that the necessary condition for a solid to be also a superfluid is to have zero-point vacancies,
or interstitial atoms, or both, as an integral part of the ground state. As a consequence, in the absence of
symmetry between vacancies and interstitials, superfluidity has a zero probability to occur in commensu-
rate solids which break continuous translation symmetry. We discuss recent 4He experiments by Kim and
Chan in the context of this theorem, question its bulk supersolid interpretation, and offer an alternative
explanation in terms of superfluid interfaces.
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A recent discovery by Kim and Chan [1,2] that solid 4He
samples have a nonclassical moment of inertia (NCMI) is a
breakthrough result which has prompted renewed interest
in the supersolid (SFS) state of matter. Early theoretical
work by Andreev and Lifshitz [3] and by Chester [4]
showed that solids may feature a Bose-Einstein condensate
of vacancies. One may consider this work as establishing
sufficient conditions for SFS. It was natural then to inter-
pret mass decoupling in the torsion oscillator experiments
as originating from a small (�1%) concentration of zero-
point vacancies present in the crystal ground state with
more unit cells than atoms [1].

However, the overwhelming bulk of experimental work
(for a review, see, e.g., [5]) indicates that vacancies and
interstitials in 4He are activated and their concentration is
negligible below 0.2 K. The most recent study [6] looked at
the density variations of solid 4He between two capacitor
plates and did not reveal any presence of vacancies. To deal
with these facts, an idea was put forward that exchange
processes in quantum crystals may lead to superfluidity
(SF) even in the absence of vacancies [7,8]. Mistakenly,
this idea is attributed to Leggett’s work [9], which estab-
lished a link between the SF response and the connectivity
of the ground state wave function (see below) and derived a
rigorous upper bound on the superfluid density, �s. Crystal
defects and their relation to the connectivity was not dis-
cussed in Refs. [9,10].

The central point of the discussion to follow is to under-
stand whether SF is possible in commensurate solids (crys-
tal structures with the number of atoms being an integer
multiple of the number of lattice points as in 4He) and what
the necessary conditions are for this to happen.

Below we reexamine Leggett’s work and show that it
implies vacancies and/or interstitial atoms as a necessary
condition for SFS in bosonic systems similar to 4He.
Chester’s ‘‘final speculation’’ that without them the solid
state of matter is insulating [4] proves to be a theorem. We
present an alternative proof using path-integral language in
which the presence of vacancies in the SF state is seen
explicitly. It also provides a picture showing why exchange
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processes on their own do not lead to SF. Finally, we
consider a general argument based on the phase–particle-
number uncertainty relation [11] which connects SF, com-
pressibility of solids pinned by external fields and vacan-
cies (pinning is crucial to separate and suppress the
acoustic phonon contribution to the compressibility from
that due to adding/removing particles to/from the bulk
[12]). We find that SFS ground states in commensurate
solids have a zero probability to be found in nature, be-
cause they require an accidental symmetry between the
vacancies and interstitials which is immediately broken by
changing system parameters [13]. This result does not
apply to systems with explicitly broken translation sym-
metry, e.g., by external periodic potential, where commen-
surability may be enforced by hand and the lattice constant
may not be changed continuously. By excluding the bulk
SFS interpretation of the Kim-Chan results, we are forced
to look for an alternative explanation of their data based on
the physics of disordered and frustrated 4He interfaces.

As shown by Feynman [14], the ground state of a
bosonic system has no zeros, �G�x1; x2; . . . ; xN� � 0.
Moreover, in superfluid �G does not decay exponentially
when one or several coordinates, say, x1; x2; . . . ; xm, are
taken around the system while other coordinates are kept
fixed. This property (called connectivity by Leggett [9]) is
key for SF, and is just another way of saying that topologi-
cal off-diagonal long-range order is required for SF [15–
17]. The requirement that connected �G be single-valued
leads to the quantization of velocity circulation and thus
stability of persistent currents in samples with the cylin-
drical annulus geometry [9].

To illustrate the point, consider a one-dimensional sys-
tem of two identical bosons forming a bound (molecular)
ground state, ’0�jr1 � r2j�, with localization length l.
Naively, the first rotating state of the molecule on a ring
of large circumference, L� l, is written as a product of
the plane wave for the center of mass coordinate, R �

�r1 � r2�=2, times the bound state: ’1 � ei2�R=L’0�jr1 �
r2j�. This expression, however, is not single valued, be-
cause if r1 or r2 is taken around the ring we get’1 ! �’1.
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The correct solution is to replace ’0 with ~’0, which has a
zero at jr1 � r2j 
 L=2, i.e., in the region where ’0 is
exponentially small; at distances jr1 � r2j � L, the two
functions are almost identical, j ~’0j 
 ’0. An energetic
cost of creating a zero in the above example is exponen-
tially small and vanishes in the limit of infinite system size.

The same considerations apply to the disconnected crys-
tal state consisting of N bosons when �G decays exponen-
tially when any finite number of coordinates are moved
around while other coordinates are kept fixed. The first
rotating state in the system of linear size L with periodic
boundary conditions can be written as �1 � e

i2�R=L ~�G,
with R �

PN
i�1 ri=N and ~�G having hyperplanes of zeros

in regions where the modulus of �G is exponentially sup-
pressed and thus extra zeros do not cost finite (system-size
independent) energy. The phase gradient circulation of �1

is �1=N, and such a system will not show the NCMI which
is based on the impossibility of setting system in rotation
with arbitrary small (in thermodynamic limit) velocity
circulation. For comparison, the first rotating state of the

single-atom superfluid system, ��SF�
1 � ei2�

P
N
i�1
ri=L�G,

has the phase gradient circulation 2� and no zeros because
creating them in the connected �G is so energetically
costly that the lowest energy state corresponds to the
relatively high kinetic energy of rotation [9]. For definite-
ness, we consider below only single-atomic superfluids,
but all considerations are readily generalized to the
m-atomic case.

By definition, j�G�x1; x2; . . . ; xN�j
2 is the probability

density to find particles at the specified positions. We fix
all coordinates except one, x1, and observe that connected
j�G�x1�j2 remains finite when x1 is taken arbitrary far from
the initial position. Formally, this property is identical to
statistical properties of atomic configurations in classical
crystals at finite temperature and was used by Chester to
introduce vacancies in the ground state. This correspon-
dence was not elaborated in Ref. [9].

How do we ‘‘visualize’’ vacancies or interstitials in the
state of identical particles with large zero-point vibrations
of atoms, especially when the solid is commensurate? The
common perception is that commensurate solids do not
have vacancies and interstitials by definition, or else there
is no way to separate them from the picture of standard
zero-point motion. Imagine a solid sample pinned by an
(arbitrarily weak) external potential preventing it from
moving as a whole. There is no problem identifying lattice
points using the average (periodic in space) particle density
profile, ��r�. Now consider a typical spatial configuration
of particle positions and lattice points and start the coarse-
graining procedure of ‘‘erasing’’ the closest particle—lat-
tice point pairs in the spirit of the spatial renormalization
group treatment. As we progress towards mesoscopic
length scales, all short-range zero-point fluctuations of
atoms away from lattice points will be erased from the
picture. The procedure continues until we have erased all
pairs with sizes much smaller than L but much larger than
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all microscopic scales. We say that the state has no vacan-
cies and interstitials if the final coarse-grained configura-
tion is empty. If the configuration still contains lattice
points, or particles, or both, at arbitrary large distances,
we say that it has zero-point vacancies or interstitials. In
what follows, we always refer to vacancies and interstitials
only in the above mentioned sense, which excludes bound
exciton-type vacancy-interstitial pairs. The decimation
procedure explains how vacancies and interstitials are
possible in commensurate solids, and works equally well
for classical crystals at finite temperature. For the com-
mensurate solid with connected �G, we may start with the
perfect-lattice configuration of particle coordinates and its
empty coarse-grained picture, and then move x1 an arbi-
trary distance away to produce an image of the vacancy and
interstitial. This will not result in the exponential suppres-
sion of the configuration probability (in fact, such configu-
rations will dominate in the normalization integral); i.e.,
vacancies and/or interstitials are necessarily present in the
SFS ground state.

Since in the SFS state vacancies and interstitials do not
form bound pairs and can be found arbitrarily far from each
other, there is no microscopic mechanism to fix their
number densities at the same value, and one may consider
creating them in the equilibrium thermodynamic state
independently [13]. Formally, it means that the particle-
number density n and the unit-cell number density nu
should be treated as independent thermodynamic parame-
ters to be determined from the minimization of free energy.
In the absence of exact interstitial-vacancy symmetry, n �
nu may occur only accidentally. The most likely outcome
is that n < nu, since energy cost to produce vacancies is
typically smaller than that for interstitials.

Our second consideration is based on the path-integral
formulation of quantum statistics [14] in terms of many-
body trajectories, fxi���g, in imaginary time � 2 �0; ��
with periodic boundary conditions fxi���g � fxi�0�g. The
most important superfluid characteristic of particle trajec-
tories, or world lines, is their winding numbers, M�, � �
1; 2; . . . ; d, where d is the space dimension. To determine
M�, imagine a cross section going through point R per-
pendicular to the direction � and count how many times
particles cross it from left to right, k��, and from right to
left, k��. By definition, winding numbers are M� � k�� �
k��. They are independent of the cross-section location R
because trajectories are continuous and periodic in imagi-
nary time. The superfluid density is then given by [18]

���s � 2mTL2�dhM�M�i; (1)

where m is the particle mass. In d � 3, the superfluid
density is finite in the thermodynamic limit, L! 1, T !
0, and T=L! 0, only if the probability of having world
lines with nonzero winding numbers in the ground state is
close to unity. We now demonstrate that crystal states
without vacancies are described by world-line configura-
tions with M � 0; i.e., they are not superfluid. We start
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with the picture of a perfect crystal with particles tightly
localized around equilibrium lattice points. This state with
M � 0 is shown in Fig. 1(a). When exchange processes are
added into the picture, the world lines are no longer in one-
to-one correspondence with the lattice points. The nature
of the exchange process, however, is such that when one
particle leaves its equilibrium crystal point R1 and goes to
point R2, the other particle goes from R2 to R1 (for pairwise
exchange). Thus, the net current of world lines through any
cross section remains zero. The same conclusion follows
by considering multiparticle exchange events [19]; see
Fig. 1(b).

Now consider a world-line configuration with M � 0
[Fig. 1(c)]. At any moment of imaginary time, we consider
the spatial configuration of particle positions and lattice
(a)

(b)

(c)

FIG. 1. Particle world lines in different crystals at low tem-
perature. The time axis is vertical. The dashed lines show the
equilibrium lattice points. (a) Nearly classical crystal at low
temperature; M � 0. (b) Insulating quantum crystal with large
zero-point fluctuations and frequent particle exchange processes;
M � 0. (c) Particle world lines with a nonzero winding number.
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points and apply the coarse-graining procedure discussed
above. All short-range exchange process and zero-point
fluctuations will be erased once we pass several atomic
distances. In the insulating state, the ‘‘movie’’ of the
coarse-grained configuration evolution in time will show
an empty ‘‘screen’’ for Figs. 1(a) and 1(b). If M � 0, as in
Fig. 1(c), it is impossible to erase all particles and lattice
points at all moments in time, since topologically winding
numbers correspond to particle trajectories moving con-
tinuously in the same spatial direction and thus create an
imbalance between particles and lattice points at arbitrary
large distances. A coarse-grained trajectory with M � 1
will then feature an interstitial and a vacancy which sepa-
rate over distances of order L and eventually make a closed
loop around the system; see Fig. 2. For the statistics of such
loops to give finite �s in the thermodynamic limit, they
have to be typical and numerous; i.e., vacancies and/or
interstitials must be an integral part of the ground state.

Our last consideration is based on the relation between
the compressibility of pinned solids, �, and vacancies.
Compressibility can be calculated through the energies of
states with one interstitial, EN�1, and one vacancy, EN�1,
as � � 1=V�E, where V is the system volume, and �E �
EN�1 � EN�1 � �EN�1 � EN� � �EN � EN�1�.
Incompressible states have finite, system-size independent
�E, which is the sum of activation energies for vacancies
and interstitials. Correspondingly, crystals without inter-
stitials and vacancies have finite �E> 0 (otherwise, these
defects would be an essential part of the ground state) and
thus are incompressible (if pinned) and vice versa. Going
one step further, this implies that SF and pinned compressi-
bility come together, and either one (including long-wave
acoustic properties with additional sound mode) can be
used for the detection of the SFS state experimentally. This
conclusion is in line with the famous uncertainty relation
coarse-graining scaleτ

r

L

FIG. 2. Evolution of the coarse-grained picture (see text) for a
trajectory with a nonzero winding number similar to Fig. 1(c).
Solid and open circles show particle and lattice site positions
correspondingly. Arrows indicate the direction of the particle-
number current.
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[11] between the phase of the superfluid order parameter,
�, and particle number, ���N � 1=2. Because of this
relation, one may not introduce a well-defined phase field
for the incompressible state of matter which tends to
completely suppress particle-number fluctuations.

We have little doubt that large activation energies for
vacancies and interstitials in 4He measured down to �1 K
temperatures [5] will not radically change to near zero
values at lower temperatures, and that 4He is a commen-
surate solid at T � 0 (it has no symmetry between vacan-
cies and interstitials either). We thus conclude that bulk
solid 4He cannot be in the SFS state. By excluding super-
flow through the crystal bulk, we are forced to look more
closely at the superfluid properties of disordered helium-
substrate layers in the helium-Vycor system [1] and frus-
trated interfaces between microcrystallites in the helium-
only system [2].

There are indications of strong disorder in the experi-
mental systems of Refs. [1,2]. For the bulk normal-SF
transition one expects the dependence of �s on reduced
temperature parameter t � �Tc � T�=Tc (in the limit of
t! 0) to be the same as in liquid 4He, namely, t0:671.
Instead, �s appears to vanish at Tc with zero derivative.
Such a behavior can be modeled by a broad distribution of
transition temperatures in the heterogeneous sample. This
observation correlates with the gradual decrease of the
decoupled mass with the increase of the torsion oscillator
amplitude by orders of magnitude. We suggest that helium
samples consist of microcrystallites of linear size D with
SF interfaces of typical thickness d between them. The SF
fraction coming from the foamlike system of interfaces is
estimated from the surface-to-volume ratio as �s=��

2d=D. To get �s=�� 1% from interfaces with d� 10 �A,
one will need crystallite sizes about a fraction of a micron.
The variety of interfaces with different crystallographic
indexes provides a distribution of transition temperatures.
For the Vycor system, one may imagine that SF persists at
the disordered helium-Vycor interface.

One of the experimental mysteries is extreme sensitivity
to 3He impurities at the level of n3 � 100 ppm. To mini-
mize kinetic energy, light 3He atoms are likely to end up at
frustrated interfaces, and then at the edges where different
interfaces meet. This may increase 3He edge versus bulk
concentration by a large factor of ��D=d�2 and produce
n�edge�3 � 1 with a profound effect on the edge-connected
interface SF (3He-rich edges act as a disordered two-
dimensional network of Josephson junctions). In Vycor,
3He atoms may go to places where disorder is the largest
and block channels between the pores.

We are not aware of studies looking at superfluidity of
interfaces between 4He crystals and 4He crystals on dis-
ordered substrates at elevated pressures. Model simulations
of domain wall boundaries in the checkerboard solid (ob-
tained for interacting lattice bosons at half-integer filling
factor) show that they remain superfluid deep into the bulk
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solid phase [20]. In the outlined picture, three predictions
are certain: (i) the superfluid fraction must strongly depend
on the crystal growth process; (ii) the amount of 3He
sufficient to suppress superfluidity scales as n3 / �2s ;
(iii) transition temperatures on interfaces do not depend
on D or on �s�T � 0�.
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