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Hard-Sphere-like Dynamics in a Non-Hard-Sphere Liquid
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5Dipartimento di Fisica, Universitá di Perugia, via Pascoli, I-06123 Perugia, Italy
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The collective dynamics of liquid gallium close to the melting point has been studied using inelastic
x-ray scattering to probe length scales smaller than the size of the first coordination shell. Although the
structural properties of this partially covalent liquid strongly deviate from a simple hard-sphere model, the
dynamics, as reflected in the quasielastic scattering, are beautifully described within the framework of the
extended heat mode approximation of Enskog’s kinetic theory, analytically derived for a hard-sphere
system. The present work demonstrates, therefore, the applicability of Enskog’s theory beyond simple
liquids.
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Since the first appearance of Enskog’s theory [1], special
attention has been devoted to the theoretical and numerical
study of the dynamics of hard-sphere fluid as a useful tool
to mimic the behavior of simple liquids [2,3]. During the
1970’s, the development of inelastic-neutron-scattering
technique (INS) facilities provided a database of dynami-
cal properties of simple liquids, while the enormous ad-
vances of computational capabilities allowed recourse to
the hard-sphere model to evaluate transport coefficients [4]
and neutron scattering response [5]. At the same time, on
the theoretical side, the dynamical properties of an en-
semble of hard spheres have been investigated by revisiting
Enskog’s original kinetic theory. One of the most signifi-
cant outcomes of these efforts is the so called extended
hydrodynamic theory [6–9], which has been particularly
successful in describing INS data [10]. While Enskog’s
kinetic theory, strictly speaking, applies to hard-sphere
fluids only, it has the advantage of readily predicting the
Q dependence of some transport coefficients, as opposed to
more rigorous and involved theories using memory func-
tions or generalized hydrodynamics. Thus this theory re-
mains a very useful tool. The extent of validity of Enskog’s
kinetic approach has been satisfactorily tested against in-
elastic neutron scattering data collected in very simple
liquids including Kr, Ar, Ne, and Rb [10]. These are all
similar in that their structure is well described by a hard-
sphere model, with an effective density and radius which
can be determined by matching the first peak of the static
structure factor. However, no attempt has been made, to our
knowledge, to verify the applicability of the theory to
liquids markedly deviating from hard-sphere-like struc-
tures, probably because very few accurate, constant Q,
experimental determinations of coherent spectra exist in
these systems [11].

In this Letter, we present a study of the collective
dynamic structure factor [S�Q;!�] at wave vectors beyond
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the first maximum of the static structure factor [S�Q�],
using inelastic x-ray scattering. The system we address is
liquid gallium, as the purpose of this work is to ascertain
validity of the connection between structural and dynami-
cal properties as predicted by Enskog’s hard-sphere theory
for a liquid with strong non-hard-sphere structural proper-
ties. Among simpler liquids, Ga has peculiar structural and
electronic properties. In addition to the low melting tem-
perature (Tm � 303 K), it shows an extended polymor-
phism in the solid phase with complex crystal structures
characterized by the competition between metallic and
covalent bindings. Despite the nearly free electron elec-
tronic density of states, anomalies associated with some
covalency residue have been reported [12]. Among them,
the most important for the present purpose is that the first
peak of the S�Q� presents a hump characteristic of non-
close-packed liquid structures [13,14], which marks a sig-
nificant departure from the smoother behavior of the hard-
sphere structure factor. Although the dynamics of liquid
gallium has been previously studied by INS [15–17] and
inelastic x-ray scattering (IXS) [18], the presence of inco-
herent scattering in the first case, and the restricted avail-
able Q range in the second case, prevented a study of the
collective dynamics in aQ region beyond the main peak of
the structure factor like the present one. We demonstrate
that the collective dynamics of molten gallium is well
described by Enskog’s theory up to wave vectors as large
as 3 times that of the first maximum of the static structure
factor. While the reduced density and mean free path of
liquid gallium at the melting point fall into the region of
applicability of Enskog’s theory, the structural peculiarities
of this system would discourage any recourse to predic-
tions stemming from a hard-sphere paradigm. However,
the hard-sphere model turns out to describe the dynamics
even in the region where the structure factor is notably
different than a hard-sphere model.
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The experiment was performed at the beamline
BL35XU [19] of SPring-8. High resolution was obtained
using the (9 9 9) reflection of perfect Si crystals, exploit-
ing a backscattering geometry in order to obtain large
angular acceptance. The flux onto the sample was
�1010 photons= sec (100 mA electron beam current) in a
1.8 meV bandwidth at 17.793 keV. The use of four analyzer
crystals, placed with 0.70� spacing on the 10 m two-theta
arm (horizontal scattering plane), and four independent
detectors, allowed collection of four momentum transfers
simultaneously. Slits in front of the analyzer crystals lim-
ited their acceptance to 0:24 nm�1 in the scattering plane.
The overall resolution of the spectrometer was about
2.8 meV, depending on the analyzer crystal. Typical data
collection times were 200 s=bin, where the bin size was
fixed at 0.25 meV. The Ga sample, about 80 	m in thick-
ness, was held in sample cell with thin (2� 250 	m)
single crystal sapphire windows. This was held, in vacuum,
at a constant temperature of 315 K.

Measured IXS spectra are reported in Fig. 1 for selected
values of momentum transferQ. The strong central peak is
readily visible along with some background due to sap-
phire windows phonons. Solid lines in the figure are best
fits with two components: (i) a single Lorentzian line,
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FIG. 1. IXS spectra of liquid Ga (T � 315 K) at the indicated
fixed Q values (open dots). Also reported is the instrumental
resolution (which is the same dotted line for all the reported
spectra) and the best-fit line shapes (continuous line, see text).
The structures at larger energy transfers are phonons from the
sapphire windows of the sample container.
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modified to account for detailed balance [20], and con-
volved with the instrument resolution; and (ii) the empty
cell background measured at each Q, normalized by the
sample transmission. As it will be shown in the following,
the Lorentzian spectrum is predicted by Enskog’s kinetic
theory, which also furnishes explicit expressions for the Q
dependence of the parameters describing its linewidth and
amplitude [Eq. (4)].

The main idea behind Enskog’s theory is to evaluate the
correlation functions of the microscopic quantities, such
has the density-density correlation function of interest
here, replacing the Liouville operator and the set of rele-
vant dynamical variables defined at the N-particle en-
semble level, with the one particle Enskog operator L
and appropriate single particle variables. Within this
framework, the dynamic structure factor reads [6–9]

S�Q;!� � S�Q�
1

�
Re

�X
j

Bj�Q�

i!� zj�Q�

�
(1)

where zj�Q� are the eigenvalues of L and Bj�Q� are co-
efficients related to the eigenvectors. There are several
approaches to determine the spectrum of L, and different
approximations can be applied depending on the density
and kinematic regions of interest. Following Ref. [9], these
regions are identified by the values of the reduced density

V0=V � ��3=
����
2;

p
(2)

in which V0 is the closest packing volume for spheres of
radius � and number density �, and by Enskog’s mean free
path lE � l0=�, with l0 � 1=

���
2

p
���2 the Boltzmann

mean free path and � � g��� the pair distribution function
evaluated at the contact point between two spheres.

Taking, as usual, density, momentum, and energy as
relevant variables, the lower three eigenvalues of L always
go to zero with Q! 0. By introducing Enskog’s thermal
diffusion coefficient DE, the adiabatic sound velocity co,
and the sound damping coefficient �E, it can be shown that
these low lying eigenvalues are [7,8]

z1�Q� � zh�Q� � DEQ2

z2;3�Q� � z��Q� � �ic0Q� �EQ
2:

(3)

This limit is practically attained at low densities
(V0=V < 0:1 and therefore lE � l0) and sufficiently small
Q’s (Q�� 1). This condition normally occurs in the case
of light scattering experiments from dilute gases (Ql0 �
1), and one speaks in terms of three extended hydrody-
namic modes.

In dense fluids (V0=V approximately larger than 0.35),
Kamgar-Parsi et al. have shown that a description in terms
of three effective hydrodynamic modes still applies [9],
and the lowQ limit of these modes is again coincident with
the hydrodynamic result. At variance with the previous
case, however, the hydrodynamic scheme breaks down as
soon asQlE � 0:05. Above this value, Enskog’s operator is
1-2
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FIG. 2. FWHM of the dynamic structure factor (left axis):
experimental determination (open circles, error bars smaller
than the symbol size) and different predictions according to
the revised Enskog’s theory [Eq. (4)]. Thin continuous line: �
is the only fitting parameter [DE is determined exploiting
Eq. (6)]. Thick continuous line: both � and DE are fitting
parameters. Thin dashed line (WA): � is determined as the value
corresponding to the hard-sphere structure factor which better
describes the measured S�Q� (DE is the only fitting parameter).
Thin dot-dashed line (MP): � is determined from the main peak
of the structure factor, as � � 2�

QM
(DE is the only fitting pa-

rameter). Also reported is the static structure factor (dotted line,
right axis), which drives the oscillations in the FWHM.

PRL 94, 155301 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
22 APRIL 2005
dominated by binary collisions and only the extended heat
mode is well separated by all the other modes [9]. The
following approximate expression for the extended heat
mode can be given

zh�Q� �
DEQ

2

S�Q�
d�Q� (4)

in which DE is Enskog’s diffusion coefficient and

d�Q� �
1

1� j0�Q�� � 2j2�Q��
(5)

can be expressed in terms of the first two even order Bessel
spherical functions. Enskog’s diffusion coefficient is re-
lated to the Boltzmann diffusion coefficient

D0 �
3

8��2

���������
kBT
�m

s
�

0:216

��2

���������
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m

s

by the collision enhancing term g��� as DE � D0=g���.
Plugging the well-known analytic expression of g��� for
hard spheres [21] in the previous equation, one easily gets a
final expression for DE in terms of the packing fraction
’ � ���3=6:

DE �
1

16

������������
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m
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6

��’2

3

s
�1� ’�3

�1� ’=2�
: (6)

Summing up, by virtue of the results recalled so far, the
S�Q;!� in dense fluids, such as in the present case of a
monatomic liquid close to the melting point, can be de-
scribed to a sufficient extent of accuracy in terms of three
Lorentzian lines (effective hydrodynamic modes) up to
relatively large wave vectors (Q � 20 nm�1), while above
this value the acoustic mode is overdamped and the quasi-
elastic extended heat mode should dominate (QlE0:05).
The full width at half maximum (FWHM) of the quasi-
elastic mode is quantitatively predicted by Eqs. (4)–(6).

The half width at half maximum of the quasielastic line
(heat mode) is reported in Fig. 2 as a function of the Q
values, together with the S�Q� [14]. Here, one can clearly
observe oscillations in the linewidth driven by the S�Q�.
The second minimum at Q � 30 nm�1, in particular, is
clearly related to the shoulder of the S�Q�, observed the
same Q position. The linewidth predicted by Eq. (4) is also
reported, with different choices of the two parameters �
and DE (see Table I). By leaving both parameters free one
gets a best fit value of � � 0:279 nm, corresponding to a
packing fraction of ’ � 0:601 (and a reduced density
V0=V � 0:811), which is just beyond the maximum theo-
retical value for hard spheres (’ � 0:545). This seems to
be a reasonable result for a dense liquid, like the one under
investigation here, recalling that � has to be regarded to as
an effective parameter, thus not necessarily strictly related
to the density through Eq. (2). Using only � as a free
parameter [i.e., exploiting Eq. (6)] one still gets reasonable
agreement (thin continuous line in Fig. 2), even in the
region of the secondary shoulder.
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Aiming at a description of microscopic properties of a
simple fluid within the hard-sphere paradigm, alternative
choices of the effective particle diameter can be consid-
ered. One can, indeed, choose � from the position of the
main peak QM of the structure factor as � � 2�

QM
(MP) [10]

or, through Eq. (2), by adjusting the value of the reduced
density to maximize the whole S�Q� agreement (WA) [22].
We tried both, either using Eq. (6) or not, and the agree-
ment with the experimental linewidth is poor. The results
are quantitatively summarized in Table I: by fixing the
hard-sphere diameter with one of the two mentioned cri-
teria the �2 is definitely worse. Moreover, looking at Fig. 2,
one clearly observes that with these choices the secondary
minimum observed in the FWHM at Q � 30 nm�1 is
smeared out. This feature, therefore, is not the mere con-
sequence of the oscillations in S�Q� (de Gennes narrow-
ing). It testifies to the presence of hard-sphere dynamics
and allows the sharp determination of an effective hard-
sphere diameter via the Bessel terms of Eq. (4).

But what is the physical meaning of such a ‘‘dynamical’’
effective diameter, and why it is larger than those obtained
from the static structure factor? As we already mentioned,
a description in terms of a uniform distribution of hard
spheres does not apply to liquid gallium, as well as to
several other liquid metals (Zn, Cd, Bi, Si). The covalency
residue of Ga, in particular, has been rationalized in terms
of dimerlike structures [12], and clustering effects have
been hypothesized aiming to reproduce the S�Q� [22]. The
1-3



TABLE I. Structural and dynamical properties of l-Ga at Tm, as derived by the present experiment. Each row is relative to a different
fitting strategy, since the effective hard-sphere diameter has been determined: (i) as an adjustable parameter, (ii) by the position of the
main peak of the structure factor (MP), and (iii) as the value corresponding to the hard-sphere structure factor which better
approximates the measured one (WA). Correspondingly, the Enskog’s diffusion coefficient, DE, can be obtained either as an additional
adjustable parameter or fixed through Eq. (6). All the other quantities are derived by � and DE according to the definitions given in the
text.

� DE �2 � �nm�1� �hDE �meV=nm�2�

Packing fraction
’ � �

6 ��
3

Reduced density
V0=V � ��3=

���
2

p
lE �nm�

FREE FREE 46 0.279 1:14� 10�3 0.601 0.811 9:32� 10�3

FREE Equation (6) 108 0.265 1:13� 10�3 0.513 0.693 9:24� 10�3

MP FREE 353 0.246 1:09� 10�3 0.411 0.555 8:90� 10�3

MP Equation (6) 4988 0.246 2:18� 10�3 0.411 0.555 1:78� 10�2

WA FREE 681 0.226 9:54� 10�4 0.318 0.430 7:78� 10�3

WA Equation (6) 38533 0.226 3:78� 10�3 0.318 0.430 3:08� 10�2
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effective diameter that we find, therefore, could be an
indication of the supra-atomic nature of the ‘‘effective
particles.’’ Consistently, plugging our effective � �
0:279 nm in Eq. (6), and solving it for a correspondent
effective mass, we getmeff � 83 u, which is larger than the
atomic mass of galliumm � 69:7 u The effective mass and
diameter, therefore, could be regarded as the mean sizes of
the ‘‘clusters’’ undergoing collective dynamics. This hy-
pothesis, however, needs to be tested extending the present
study to other systems and at different temperature, as the
structural anomalies are known to be strongly temperature
dependent.

In summary, we have shown how the microscopic dy-
namics of a well known non-hard-sphere liquid, namely,
liquid gallium at the melting point, is surprisingly well
described by Enskog’s theory, analytically derived for a
hard-sphere fluid. More specifically, the connection be-
tween structure and dynamics, which is the main outcome
of this theory, is robust enough to persist even in a wave-
length region where anomalies beyond simple liquids be-
havior develops. From the experimental data, therefore, an
effective hard-sphere diameter can be obtained, which
turns out to be larger than the one related to structural
properties according to well established methods. This
result suggests, therefore, an extended validity of the re-
vised Enskog’s theory beyond the class of systems (hard
spheres) for which it was derived, and provides an experi-
mental route to the determination of an effective dynamical
diameter.
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