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Heat Conduction Paradox Involving Second-Sound Propagation in Moving Media
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In this Letter, we revisit the Maxwell-Cattaneo law of finite-speed heat conduction. We point out that
the usual form of this law, which involves a partial time derivative, leads to a paradoxical result if the body
is in motion. We then show that by using the material derivative of the thermal flux, in lieu of the local one,
the paradox is completely resolved. Specifically, that using the material derivative yields a constitutive
relation that is Galilean invariant. Finally, we show that under this invariant reformulation, the system of
governing equations, while still hyperbolic, cannot be reduced to a single transport equation in the
multidimensional case.
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Introduction.—According to classical continuum me-
chanics, in a homogeneous and isotropic thermally con-
ducting medium, the thermal flux vector q obeys Fourier’s
law of heat conduction, namely,

q � �KrT; (1)

where T � T�x; t� denotes the absolute temperature and
the constant K�>0� denotes the thermal conductivity.
Equation (1), also known as Fick’s law in the context of
mass diffusion, is one of the basic constitutive relations in
the physical sciences. Unfortunately, Fourier’s law, which
we note is local in time, predicts that thermal signals
propagate with infinite speed, a drawback which appears
to have first been noted by Nernst in 1917 (see Ref. [1]).
Such behavior, which is most apparent under low tempera-
ture and/or high heat-flux conditions [2,3], clearly violates
causality.

To show how this defect manifests itself, we begin by
noting that the balance law for the internal (heat) energy
can, in the absence of all thermal sources or sinks and
neglecting internal dissipation, be expressed in terms of T
as (see, e.g., Ref. [4], p. 202)

�cp
DT
Dt

�r � q � 0; (2)

where cp, the specific heat at constant pressure, is a con-
stant. Here, u is the velocity vector of the material point, t
is time, � is the mass density, and we note that the equation
of continuity,

@�
@t

�r � ��u� � 0; (3)

was employed in obtaining Eq. (2) from the balance equa-
tion for the internal energy. In addition,

D
Dt

�
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� u � r; (4)
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which denotes the material derivative, acknowledges the
fact that the time rate of change of a material quantity at a
certain geometrical point is the result of two processes: A
change in the geometrical point, i.e., the partial time de-
rivative, and a change due to the fact that a different
quantity is transported from the neighboring points to the
point under consideration.

When combined with Eq. (2), the conservation of energy
law, Eq. (1), yields the heat transport equation

Tt � u � rT � �r2T � 0; (5)

where � � K=��cp� is the thermal diffusivity. Like the
much better known heat (or diffusion) equation, which
Eq. (5) reduces to when u � 0, the latter is also a partial
differential equation (PDE) of the parabolic type.
Consequently, it is predicted that a thermal disturbance at
any point in a material body will be felt instantly, but
unequally, at all other points of the body. From this, it is
obvious that Fourier’s law does not fully describe the
diffusion process.

To correct this unrealistic feature, which is known as the
‘‘paradox of heat conduction’’ (PHC), various modifica-
tions of Fourier’s law have been proposed. Of these, the
best known is the Maxwell-Cattaneo (MC) law [1,2,5]

�1� 0@t�q � �KrT; (6)

where @t denotes @=@t. Here, the thermal relaxation con-
stant 0�>0� represents the time lag required to establish
steady heat conduction in a volume element once a tem-
perature gradient has been imposed across it [2]. This
generalization of Fourier’s law accounts for the finite speed
of heat conduction by adding a term proportional to the
time derivative of the flux vector, known as the ‘‘thermal
inertia’’ term, to the left-hand side of Eq. (1). It should be
mentioned that the value of 0 has been experimentally
determined for a number of materials [1,6]. And although
0 turns out to be very small in many instances, e.g., 0 is
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of the order of picoseconds for most metals [2,7], there are
several materials where this is not the case, most notably
sand (21 s), H acid (25 s), NaHCO3 (29 s), and biological
tissue (1–100 s) [2,7].

While the MC law corrects one paradox, i.e., the PHC, it
also gives rise to another, namely, the one that occurs when
the MC law is used to describe heat conduction in a moving
solid. Hence, it is to the investigation and resolution of this
second paradox that the present Letter is devoted. Specifi-
cally, we consider the problem wherein a Heaviside (i.e.,
step) change in temperature occurs at one end of a ther-
mally conducting half-space that is moving at a constant
speed. It is shown that under Eq. (6), the heat transport
equation in the moving frame is different from the one in
the rest frame. We then shown how, by replacing the partial
time derivative in Eq. (6) with the material derivative, the
paradox is completely resolved.

Before going on, it is appropriate to note that Fourier’s
law itself remains a topic of considerable interest and
study. Two fundamental questions that have been inves-
tigated in recent years are the following: (i) Is Fourier’s law
valid in low dimensional (i.e., 1D or 2D) systems [8,9]?
(ii) What are the necessary or sufficient dynamical con-
ditions that form its basis [10,11]? Addressing these issues
is becoming increasingly important because of the need,
driven by new technological demands, to have a better
understanding of nanoscale heat transport [12].

Heat transport equation under the MC law.—Let us
begin by observing that q can be eliminated from Eq. (2)
using Eq. (6). Consequently, the heat transport equation
arising from the MC law is found to be

0�Ttt � �u � rT�t	 � Tt � u � rT � 0c
2r2T; (7)

where c �
�����������
�=0

p
and again no thermal sources or sinks

are present. In the case of a continuum at rest, Eq. (7)
reduces to the well known damped wave equation (DWE)
(see, e.g., Ref. [13] and those therein). Hence, when u � 0,
Eq. (7) predicts that heat conduction occurs via the propa-
gation of damped thermal waves of finite speed c, a phe-
nomenon known as ‘‘second sound’’ [1].

To simplify our analysis, we introduce the following
nondimensional variables: x0 �x=l, t0 � t=0, T0 �T=T0,
and u0 � u=c, where l �

���������
�0

p
and T0�>0�, respectively,

denote a characteristic length and temperature. On making
the indicated replacements, Eq. (7) is reduced to the di-
mensionless form

Ttt � �u � rT�t � Tt � u � rT � r2T; (8)

where all primes have been omitted for convenience.
Exact solution for a medium at rest.—First, we consider

second sound propagation in a solid that is at rest. For the
sake of simplicity, we chose the 1D case of a planar wave
front, or singular surface, that is propagating along the x
axis of a Cartesian coordinate system, say, in the positive x
direction, into a semi-infinite, homogeneous, and isotropic
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medium of (constant) thermal diffusivity �. (Here, we note
that the same mathematical problem arises for MC-based
heat conduction in a very thin, semi-infinite 1D rod whose
lateral surfaces are perfectly insulated.) Furthermore, let
��x; t� denote the dimensionless departure from a constant
initial temperature, Ti, and let us also assume for simplicity
that �t�x; 0� � 0.

Now, at time t � 0� , the temperature at the boundary
x � 0 jumps instantly from 0 to 1, and is maintained there
for all t > 0. Assuming that heat conduction within the
half-space is governed by the MC law, we wish to deter-
mine � for all x; t > 0. Consequently, we are led to consider
the following initial and boundary value problem (IBVP):

�t � �tt � �xx; �x; t� 2 �0;1� � �0;1�;

��0; t� � H�t�; ��1; t� � 0; t > 0;

��x; 0� � 0; �t�x; 0� � 0; x > 0;

(9)

where H��� is the Heaviside unit step function and T0
denotes the initial jump amplitude at x � 0 in the dimen-
sional variables. The solution of this IBVP is well known
and is given by [14]

��x; t� � H�t� x�

(
e�x=2 � x

Z t

x
e��=2

I1�
1
2

����������������
�2 � x2

p
	d�

2
����������������
�2 � x2

p
)
;

where I1��	 denotes the modified Bessel function of the first
kind of order one. From this, we see that � suffers a
propagating jump, of magnitude e�x=2, across the wave
front x � t.

A paradox in the moving frame.—Consider now the
simplest possible motion of the half-space, namely, trans-
lation along the x axis with constant (dimensionless) ve-
locity u�x; t� � U. (Clearly, jUj can also be regarded as a
Mach number.) In this case, Eq. (8) reduces to

Ttt �UTxt � Tt �UTx � Txx: (10)

This PDE is a generalization of the DWE, and like the
latter is hyperbolic. Yet, it exhibits a paradoxical feature in
that the wave speeds for thermal disturbances are nonlinear
functions of U, namely,

c1;2 �
1
2�U�

���������������
U2 � 4

p
	; where c1 >max�U; 0	;

c2 <min�U; 0	: (11)

Clearly, c1;2 are not equal to U� 1, i.e., the sum or
difference of the (dimensionless) frame velocity and ther-
mal wave speed, and therefore they lack physical meaning.

If we further suppose that the boundary heat source is
moving with the half-space, then the Heaviside boundary
condition is imposed at the moving plane x � Ut. Now,
according to Galileo’s principle of relativity (or Galilean
relativity), the fundamental postulate of classical mechan-
ics that asserts the equivalence of all inertial frames (see
Refs. [15,16]), the propagation of second sound in the
1-2
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FIG. 1. � vs � for t � 0:5. Bold line: U � 0:2. Thin solid
line: U � 0. Dashed line: U � �0:2.
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moving body should be exactly the same as in the resting
body. Mathematically, this means that one should get an
identical IBVP in a frame attached to the moving half-
space.

To see if this is true, we reconsider the problem in the
moving frame, i.e., under the Galilean transformations

�� x�U�; �� t; ���; t� � T�x; t��Ti: (12)

Then

Tt � �t �U��; Tx � �� ) Tt �UTx � �t; (13)

Txx � ���; Txt � ��t �U���;

Ttt � �tt � 2U��t �U2���:
(14)

Introducing these formulas in Eq. (10) and reformulating
the IBVP in the moving frame yields

�t � �tt �U��t � ���; ��; t� 2 �0;1� � �0;1�;

��0; t� � H�t�; ��1; t� � 0; t > 0;

���; 0� � 0; �t��; 0� � 0; � > 0:

(15)

Note that because of our assumption that the boundary heat
source is in the same (moving) frame as the half-space, we
get almost the same IBVP as in (9), the single exception
being that the heat transport equation now contains a mixed
derivative term with coefficient U.

Solving IBVP (15) using the Laplace transform yields
the exact �, t-domain solution

���;t��H�t��=C�

�

(
e�ad��ad�

Z t�U�=2

�=C
e�a&

I1�a
����������������������
&2��d��2

p
	d&����������������������

&2��d��2
p

)
;

(16)

where a � 2�4�U2��1, d � �2a��1=2, C�1 � d�U=2,
and we note that C is strictly positive.

Clearly, the transport equations in IBVPs (9) and (15),
and therefore their solutions, are not the same. This means
that according to the MC law, the process of heat conduc-
tion in the moving body is different from what it is in the
resting body, thus violating Galilean relativity.

In Fig. 1, we have graphed Eq. (16) for three values ofU.
There, we see that the propagation speed C of the wave
front in the moving frame depends on U, a physically
unrealistic prediction. In particular, C is a decreasing
function of U, where we note that C � 1 correctly corre-
sponds to the wave front speed in the resting frame when
U � 0. Hence, we now proceed to alleviate this deficiency
by appropriately modifying the MC law so as to ensure its
Galilean invariance; in other words, that it satisfies
Galileo’s principle of relativity.

The MC law in the material framework.—The standard
form of the MC law involves only a partial time derivative.
However, a more physically justified approach is to assume
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that the thermal inertia is a property of the material point,
rather than of the geometrical point as it is in Eq. (6).
Mathematically, this means that the partial time derivative
is replaced by the material derivative.

Consider again the 1D case where the flux, velocity, and
temperature are scalar functions of x and t. To simplify the
mathematics, we assume that the density � � const.
Consequently, Eq. (3) reduces to ux � 0, or u � u�t�. If
we also assume that the motion occurs at a constant veloc-
ityU along the x axis, then u � U. Now, if we replace @t in
Eq. (6) with the material derivative operator D=Dt, we get
the following system governing second sound-based heat
conduction in 1D:

Tt �UTx � ���cp�
�1qx; (17)

q� 0�qt �Uqx� � �KTx: (18)

Once again eliminating q�x; t�, we obtain the dimension-
less heat transport equation

Tt �UTx � Ttt � 2UTxt � �1�U2�Txx � 0; (19)

which is strictly hyperbolic. Note that unlike Eq. (11), the
wave speeds of thermal disturbances with respect to the
resting frame are now c1;2 � U� 1, exactly as we would
expect for a body moving with velocity U.

Returning to the moving frame [Eqs. (12)], and again
making use of Eqs. (13) and (14), we find that Eq. (19)
reduces exactly to the transport equation in IBVP (9).

This means that in a body in uniform motion, the heat
conduction process as described by the ‘‘material’’ form of
the MC law [Eq. (18)] is identical to that in the resting
body; in other words, the material form of the MC law is
strictly Galilean invariant.

This relatively simple example involving a solid body
illustrates the importance of using the material derivative
in the MC law. Let us now extend this kind of invariance to
second sound-based heat conduction occurring in general
continua.

General 3D formulation.—In the general 3D case, the
MC law in the material framework is
1-3
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q � 0�@t � u � r�q � �KrT: (20)

From this, it is clear that in more than one dimension, the
material MC law is inextricably coupled to Eq. (2) because
it cannot be resolved with respect to q. Hence, Eqs. (2), (3),
and (20) compose a coupled system. We prove now that
this system is Galilean invariant.

Returning to dimensional variables, we consider the
general motion of a material continuum with velocity
u�x; t�. In a frame moving with constant velocity V, one has

� � x� Vt; t � t; u�x; t� � V � v��; t�;

q�x; t� � f��; t�; T�x; t� � Ti � ���; t�:
(21)

Note that, in general, V could be different from u, and
v��; t� denotes the velocity relative to the moving frame.

Now we are in a position to derive the following vector
formulas relating the moving frame to the resting one:

q t � f t � V � r�f ; Tt � �t � V � r��;

u � rx � �V � v��; t�	 � r�;
(22)

where the superscripts on the gradient operators refer to the
coordinates with respect to which they are taken. Then it is
easy to verify that

qt � u � rxq � f t � v��; t� � r�f ; (23a)

Tt � u � rxT � �t � v��; t� � r��: (23b)

Introducing the last formulas in Eqs. (2), (3), and (20),
we get the following system describing second sound-
based heat conduction in the moving frame:

�t �r � ��v� � 0; (24a)

�cp�@t � v � r�� � �r � f; (24b)

f � 0�@t � v � r�f � �Kr�; (24c)

where the superscripts are omitted without fear of confu-
sion. Clearly, the last system demonstrates that the im-
proved MC law is ‘‘material invariant’’ in the sense that
the system of equations is Galilean invariant, thus assuring
us that the nature of heat conduction is the same in any
inertial frame. Also, it must be mentioned that system (24)
is valid for any kind of material continuum; one has only to
close the system by including the appropriate form of the
(vector) momentum equation and constitutive relation for
the stress.

Conclusions.—In this Letter, we have shown that the
usual form of the MC thermal flux law leads to a paradoxi-
cal result if a moving continuum is considered. We then
showed that by replacing the partial time derivative in this
constitutive relation with the material derivative operator,
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the paradox is removed. This modification to the MC law
that we have proposed yields material invariance; i.e.,
changing to a different inertial coordinate system leaves
the system of governing equations [i.e., (24)] unchanged.
The significance of this, of course, is that the material
version of the MC law satisfies Galileo’s principle of
relativity. What is more, it is interesting to note that, while
it does suffer from the PHC, Fourier’s law, in itself, does
not contradict Galilean relativity.

Finally, it should be mentioned that very often the issue
of Galilean invariance of the models used in continuum
mechanics is underestimated, especially when approxi-
mate amplitude equations are derived. For a case in point,
we refer the reader to the Boussinesq type dispersive
models of shallow water flows [17,18].
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