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Atmospheric Turbulence and Orbital Angular Momentum
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The effects of propagation through random aberrations on coherence for single-photon communication
systems based on orbital angular momentum states are quantified. A rotational coherence function is
derived which leads to scattering equations for azimuthal modes of different orbital angular momentum
states. The effect on a single-photon communication system is quantified using the channel capacity. The
work shows that the decoherence effect of atmospheric turbulence on such systems is important even for
weak turbulence.
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FIG. 1. Example intensity (gray scale) and phase map
(
=4-spaced contours) of a pure LG0

1 beam (left) and the same
beam with aberrations caused by propagation through
Kolmogorov turbulence (right).
Photons carry both spin and orbital angular momentum,
both of which offer practical realization of quantum digits
and the possibility of secure single-photon optical commu-
nication [1]. The spin angular momentum is associated
with the polarization, which, for a given propagation di-
rection, is described by a two-dimensional state and can be
used as the basis of a quantum binary digit or qubit. Secure
quantum key distribution over a free-space link using
polarization states has been demonstrated [2]. The orbital
angular momentum (OAM) is associated with the spatial
distribution of the wave function and there are in principle
an infinite number of OAM eigenstates available. This
offers the possibilities of realizing arbitrary base-N quan-
tum digits and of higher capacity optical communication
and quantum cryptography corresponding to a base-N digit
per single photon [3], and there is considerable interest in
free-space or line-of-sight communications due to the
spatial-image nature of OAM. Recently, an interferometric
sorter has been demonstrated which could be extended to
measure the OAM of a photon with, in principle, 100%
efficiency [4]. However, the spatial-image nature of OAM
suggests that it may be susceptible to spatial aberrations
such as arise in atmospheric turbulence [5]. Refractive
index fluctuations in the atmosphere associated with turbu-
lence give rise to random phase aberrations on a propa-
gating optical beam. The resulting scattering at optical
wavelengths is characterized as small-angle forward scat-
tering and the effect on the polarization state of the beam,
and thus the spin states of photons, is very small even for
relatively strong atmospheric turbulence aberrations.
However, the effect on OAM cannot be dismissed. In this
Letter, I address the effect of random phase aberrations on
OAM of single photons and show that even weak aberra-
tions can have a severe impact on the fundamental opera-
tion of systems using OAM.

I present a semiclassical approach to obtain the proba-
bility distribution for measurements of the orbital angular
momenta of photons after propagation through random
phase aberrations. This leads naturally to the description
of the spatial coherence of the wave in terms of a rotational
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coherence function, from which relations for the effec-
tive scattering between different azimuthal modes associ-
ated with OAM are obtained. The OAM measurement
probabilities relate directly to the probabilities of obtain-
ing correct or incorrect measurements of a transmitted
‘‘symbol’’ in a communication link. I use this approach
to evaluate the OAM scattering for Kolmogorov atmos-
pheric phase aberrations and to estimate the theoretical
performance limits this implies for communication links
based on OAM of single photons.

Consider a paraxial beam that initially has a transverse
spatial wave function corresponding to an eigenstate of
OAM. Without loss of generality, we write the OAM
eigenfunctions as

’p;l�r; �� � Rp�r�
exp�il���������

2

p ; (1)

with eigenvalues lz � l �h, where l is the azimuthal mode
order, and Rp�r� comprise a radial basis set (normalized
with weight r). As the beam propagates, it is scattered by
random refractive index inhomogeneities, the effect of
which is a phase aberration that perturbs the complex
amplitude of the wave (Fig. 1). The resulting wave
��r; �; z� is a superposition of eigenstates and the condi-
tional probability of obtaining a measurement of the OAM
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of a photon lz � l �h is obtained by summing the probabil-
ities associated with that eigenvalue,

P�lj�� �
X
p

jap;l�z�j
2: (2)

Substituting for the superposition coefficients ap;l�z�,
which are given in the usual way as ap;l�z� �
h’p;lj��r; �; z�i, and rearranging, this becomes

P�lj�� �
ZZ ZZ

���r0; �0; z���r; �; z�
X
p

R�
p�r�Rp�r0�



exp��il��� �0�


2

r0dr0d�0rdrd�:

Using the completeness of the radial basis,P
pR

�
p�r�Rp�r

0� � ��r; r0�=r, and integrating over r0, gives
an expression that is independent of the initial choice of
radial basis,

P�lj�� �
ZZ Z

���r; �0; z�


��r; �; z�rdr
exp��il��� �0�


2

d�0d�:

The aberrations are random, so the probability that a
measurement of the OAM will yield a value lz � l �h is
found by taking the ensemble average, thus,

P�l� � hP�lj��i

�
ZZ Z

h���r; �0; z�


��r; �; z�irdr
exp��il��� �0�


2

d�0d�; (3)

where h�i denotes the ensemble average. We shall refer to
the ensemble average term in the integrand as the rota-
tional field correlation at radius r. Assuming the statistics
of the turbulence aberrations to be isotropic and since the
beam profile at launch was rotationally symmetric, then the
rotational field correlation can be written as

C��r;��; z� � h���r; 0; z���r;��; z�i; (4)

where �� � �� �0, and (3) reduces to

P�l� �
ZZ

C��r;��; z�rdr exp��il���d��: (5)

Thus, the OAM probability distribution is determined by
the circular harmonic transform (Fourier series expansion)
of the rotational field correlation, which is a function of the
spatial coherence properties of the wave. (See, for ex-
ample, [6] for a consideration of finite temporal coherence
in vortex fields.) It can be considered a generalization of
the Fourier relationship between azimuthal spatial distri-
bution and OAM [7].

We now need to consider how atmospheric turbulence
influences the rotational field correlation. The rotational
field correlation is a function of the second order spatial
statistics of the complex amplitude fluctuations. Although
there exists a significant body of work on analytical mod-
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elling for these second order statistics for plane wave and
spherical wave geometries, the problem is highly nontrivial
for general beam geometries, and analytical modelling
has been described only for limited geometries and beam
shapes [8,9]. We shall therefore restrict ourselves to con-
sidering the weak turbulence regime, in which intensity
fluctuations or scintillation arising from the turbulent
phase aberrations are sufficiently small that they can be
neglected. In this approximation, the cumulative effect of
the turbulence over the propagation path can be considered
as a pure phase perturbation on the beam at the output
plane z. The complex amplitude of the beam is then given
by

��r; �; z� � R�r; z�
exp�il0���������

2

p exp�i��r; ��
; (6)

where ��r; �� is the phase perturbation and l0 is the initial
OAM quantum number of the unperturbed beam.
Substituting into the rotational field correlation (4) and
simplifying gives

C��r;��; z� � jR�r; z�j2C��r;���
exp�il0���

2

; (7)

where C��r;��� is given by

C��r;��� � hexpfi���r;��� ���r; 0�
gi: (8)

We shall refer to C��r;��� as the rotational coherence
function of the phase perturbations at radius r. The prob-
abilities for the angular momentum measurements (5)
become

P�l� �
Z 1

0
jR�r; z�j2r
�r; l� l0�dr; (9)

where 
�r;�l� is the circular harmonic transform of the
rotational coherence function,


�r;�l� �
1

2


Z 2


0
C��r;��� exp��i�l��
d��: (10)

Equation (9) can be viewed as a scattering equation for
optical power between different OAM states. 
�r;�l� are
the scattering coefficients between azimuthal modes for
optical power in an annulus of radius r. The OAM proba-
bility distribution is obtained by averaging over the radial
power distribution of the beam jR�r; z�j2r. Since the scat-
tering coefficients depend only on the difference �l � l�
l0, for a given radial beam profile R�r; z� the resultant OAM
spreading is independent of the initial eigenvalue l0 and
therefore we have probabilities for correct or incorrect
measurements of a transmitted digit in an OAM commu-
nication link that are independent of the digit value. (This
disagrees with [5], which argues that l � 1 beams are less
susceptible due to the stability of an l � 1 singularity.
However, it is the wave function across the beam rather
than a singularity at its center that determines the OAM
distribution.)

All that remains is to find an expression for the rotational
coherence function and the corresponding scattering coef-
ficients. Assuming the refractive index fluctuations to be a
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Gaussian random process, which allows the standard result
hexp�ix�i � exp�� 1

2 hjxj
2i� to be used, then the rotational

correlation function can be written

C��r;��� � exp
�
�
1

2
D�

���������2r sin
�
��
2

���������
�	

; (11)

where D��j�xj� � hj��x� ���x� �x�j2i is the phase
structure function of the aberrations. For Kolmogorov
turbulence phase aberrations, D���x� � 6:88��x=r0�

5=3

where r0 is the Fried parameter [10]. Thus, for
Kolmogorov turbulence phase statistics, the rotational co-
herence function at radius r is

C��r;��� � exp
�
�6:88
 22=3

�
r
r0

�
5=3

��������sin
�
��
2

���������
5=3

	
:

(12)

In Fig. 2 the first few OAM scattering coefficients 
�r;�l�
are plotted against r=r0. The Fried parameter r0 corre-
sponds approximately to the spatial coherence length of
the aberrations. For r � r0, the effects of the phase aber-
rations are weak and the OAM scattering is small, but they
increase rapidly as r becomes comparable to r0. Thus the
performance of a communication system will depend
strongly on the beam size relative to r0. Narrow beams
with the optical power concentrated close to the optical
axis will be less affected.

The free-space Laguerre–Gaussian (LG) beam modes
(LGp

l ) have transverse wave functions which are eigen-
functions of OAM and have therefore been the subject of
considerable interest recently for single-photon communi-
cations using OAM states and for possible implementation
of base-N quantum digits [3]. It is therefore interesting to
see how the OAM of such beams are affected by turbu-
lence. The OAM probabilities for various LG beams prop-
agating through Kolmogorov turbulence were evaluated
using (9), substituting jR�r; z�j2 with the LG radial inten-
sity profiles. Figure 3 plots probabilities of different OAM
measurements for a single beam mode LG0

1. For different
order beam modes, the effect of the phase perturbations
depends on the radial power distribution in the beam,
FIG. 2. OAM scattering coefficients 
�r;�l� between modes
l0 and l0 ��l for an annulus of radius r in a beam for aberra-
tions with Fried parameter r0. The �l � 0 plot corresponds to
the unscattered light.
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which is characterized by the second radial moment of
the intensity and which for an LGp

l beam is

hr2i �
Z 1

r�0
Rl;p�r�r

2rdr � �2p� l� 1�b2; (13)

giving a characteristic rms beam radius rp;l �
b

�����������������������
2p� l� 1

p
. Figure 4 plots the probabilities for obtain-

ing the original OAM eigenvalue scaled against this rms
beam radius for several different LGp

l beams. Scaled to the
rms beam radius, the behavior for different beam modes is
very similar.

The OAM probabilities can now be used to quantify the
effects on a communication link using the channel capacity
[11]. The channel capacity is defined as

C � max�H�x� �H�xjy�
; (14)

where H�x� is the entropy of the source, and H�xjy� its
conditional entropy (or the equivocation) given received
data y,

H�x� � �
X
xi

P�xi� logP�xi�; (15)

H�xjy� � �
X
yj

X
xi

P�xi; yj� logP�xijyj�; (16)

and where P�xi� is the probability for the transmitted
signals fxig, P�xi; yj� is the joint probability for fxig and
received signals fyjg and P�xijyj� is the conditional proba-
bility for fxig given fyjg.

Consider a line-of-sight communication link using
OAM eigenstates in the range l � �L; . . . ; L for different
signal values. The source entropy is maximized when the
probabilities for the transmitted states are uniform thus
P�xi� � 1=�2L� 1�, giving for the source entropy H�x� �
log�2L� 1�.
FIG. 3. Probabilities of obtaining different OAM measure-
ments P�l � l0 ��l� for a LG0

1 beam plotted against the ratio
of the Gaussian beam width parameter b to the Fried parameter
r0. The probability of obtaining the original eigenvalue (�l �
0), i.e., the correct signal, decreases rapidly as the Fried parame-
ter becomes comparable to the beam width parameter. There is a
corresponding increase in the probabilities of obtaining OAM
measurements different from the initial eigenvalue (�l � 0),
with those corresponding to adjacent azimuthal modes increas-
ing most rapidly.
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FIG. 5. Plots of the channel capacity for a communication link
employing OAM states of single photons for different numbers
of OAM states l � �L; . . . ; L using LG beams LGp

l . The dashed
line shows the capacity for a polarization-based channel (two-
state) for comparison.

FIG. 4. Probabilities of obtaining the original eigenvalue
P�l � l0� for several different LG beam modes plotted against
the ratio of the rms beam radius rp;l to the Fried parameter.
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The OAM of photons measured at the receiver are not
guaranteed to be those of the transmitted photons due to
scattering. This will give a nonzero value for the equivo-
cation. The set of receiver signal values fyjg comprises
measurements of OAM eigenvalues in the range l �
�L; . . . ; L, and an extra signal value corresponding to
‘‘lost’’ photons (i.e., those photons scattered outside the
original range of OAM). The conditional probabilities for
the receiver signals P�yjjxi� are simply the OAM measure-
ment probabilities that we have already found [Eq. (9)] and
the equivocation can be rewritten in terms of them as

H�xjy���
X
ij

P�xi�P�yjjxi�
�
logP�yjjxi��log

X
i

P�yjjxi�
	
:

Figure 5 plots the channel capacities for systems using
different numbers of LG beam modes LG0

l for l �
�L; . . . ; L, for Kolmogorov turbulence. The channel ca-
pacity decreases rapidly as the turbulent aberrations in-
crease. For a three-state system with L � 1, the channel
capacity is reduced to below that for an ideal binary state
channel for b=r0 > 0:1. For example, with moderate
ground-level turbulence strength C2

n � 10�14 m�2=3 and
wavelength � � 1 �m this corresponds to a mere z �
200 m propagation path for a beam with b � 1 cm (which
is a narrow beam, comparable to the Fresnel length

������
�z

p
,

chosen to give a ‘‘best-case’’ scenario).
The results show that the effects even of weak aberra-

tions are significant, and this poses a considerable problem
for communication systems based on OAM. The key pa-
rameter determining the magnitude of the effect is the
beam width relative to the coherence scale of the aberra-
tions (the ratio b=r0.) The narrower the beam, the less is the
OAM scattering, although, diffraction places a lower limit
on the practical choice of beam width to around the Fresnel
length. This behavior is in contrast to intensity modulation
systems for which scintillation is more important, the
effects of which can be reduced by using wider beams.
Higher-order mode beams are even more susceptible due to
their wider intensity distributions. The phase aberrations
nature of the problem suggests adaptive optics may be of
considerable benefit [12]. Although the theory has been
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applied here to Kolmogorov atmospheric statistics, this
assumption is not critical, and one would expect compa-
rable results for other atmospheric models. The rotational
coherence and scattering analysis presented here is quite
general and could be applied to other sources of perturba-
tions. Indeed, the demonstrated sensitivity of OAM states
to phase perturbations means that this will be an important
consideration generally for systems using OAM. More-
over, since the key attribute is the spatial-image nature of
the information, other spatial-image schemes, for example
Hermite-Gaussian modes, will be similarly affected.
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