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Hilbert’s 17th Problem and the Quantumness of States

J. K. Korbicz,1 J. I. Cirac,2 Jan Wehr,3 and M. Lewenstein1

1Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany
2Max-Planck Institut für Quantenoptik, Hans-Kopfermann Str. 1, D-85748, Garching, Germany

3Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave., Tucson, Arizona 85721-0089, USA
(Received 5 August 2004; published 22 April 2005)
0031-9007=
A state of a quantum system can be regarded as classical (quantum) with respect to measurements of a
set of canonical observables if and only if there exists (does not exist) a well defined, positive phase-space
distribution, the so called Glauber-Sudarshan P representation. We derive a family of classicality criteria
that requires that the averages of positive functions calculated using P representation must be positive. For
polynomial functions, these criteria are related to Hilbert’s 17th problem, and have physical meaning of
generalized squeezing conditions; alternatively, they may be interpreted as nonclassicality witnesses. We
show that every generic nonclassical state can be detected by a polynomial that is a sum-of-squares of
other polynomials. We introduce a very natural hierarchy of states regarding their degree of quantumness,
which we relate to the minimal degree of a sum-of-squares polynomial that detects them.
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In recent years there has been a lot of interest in classi-
fying states of quantum systems with respect to their
quantum nature. In particular, the problem of characteriz-
ing entangled states has attracted a lot of attention [1]
because of its vital importance for quantum information
processing. One of the aspects of this problem concerns
nonlocality of quantum mechanics and violations of Bell-
like inequalities [2] and the existence of local hidden
variable models. The problem of the existence of a classi-
cal probabilistic description of quantum states of a single
system has, however, a longer history and can be traced
back to the seminal papers of Glauber and Sudarshan [3].

Let us consider a harmonic oscillator Hilbert’s space,
and fix the canonical creation and annihilation operators, a,
ay. In the Refs. [3] it was shown that any state % has a P
representation, i.e., can be uniquely put into a form diago-
nal in coherent states j�i:

% �
Z
d2�P��;���j�ih�j; (1)

where � � x	 iy, d2� � dxdy. The integration with P in
(1) is understood in the distributional sense [4]. Hermiticity
and normalization of % imply that P� � P andR
d2�P��;��� � 1, while positivity implies thatR
d2�P��;���jh�j ij2 
 0 for every  .
A state of a quantum system is classical with respect to

measurements of a given set of canonical observables if
and only if the Glauber-Sudarshan P representation is a
well defined, positive phase-space distribution [5].
Mathematically speaking, in such a situation P defines a
probabilistic measure 
 on the phase-space R2 through

R 2 � � � 
���: �
Z
�
Pd2� 
 0: (2)

Statistical properties of states with the positive P represen-
tation are as those of the classical statistical ensembles,
described by the measure 
; that explains why such states
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are called classical. However, the class of allowed P’s is
larger than that [4], and there exist nonclassical states (such
as squeezed, or Fock states) for which the integral (2) does
not always exist, or attains negative values.

In this Letter we derive a family of classicality criteria
that require that averages of positive functions calculated
using P representation must be positive. For polynomial
functions, these criteria are related to Hilbert’s 17th prob-
lem, which in its simplest form states that not every posi-
tive semidefinite polynomial must be a sum-of-squares
(SOS) of other polynomials [6]. Our criteria have physical
meaning of generalized squeezing conditions, and may be
interpreted as nonclassicality witnesses (in analogy to en-
tanglement witnesses, [7]). We show that every generic
nonclassical state can be detected by a SOS polynomial.

Let us begin by observing that the set of probabilistic
measures forms a convex subset of the set of all P’s. The
extreme points of this set are point concentrated measures
f�2�� �; 2 Cg, and the decomposition into these
points is unique [8]. Hence the classical states form a
generalized simplex �. This is the general feature of sets
of probabilities for classical systems [9]. Therefore, geo-
metrically the problem of distinguishing between classical
and nonclassical states amounts to the operational descrip-
tion of the simplex of measures � in the space of all P
distributions. We note that one encounters closely related
problems in the study of quantum entanglement in multi-
partite systems (see [7] and references therein), with the
difference being that the convex subset of classically cor-
related states is not a simplex.

The solution of such stated problem was recently pro-
posed by Richter and Vogel [10]. They studied the charac-
teristic function of P, i.e., its Fourier transform

P̂���: �
Z
d2�P��;���e2i��ix�ry� � trf%:W���:g; (3)

where � � �r 	 i�i and W��� � e�a
y��a is the Weyl op-
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erator. In what follows the hat, ,̂ will always denote Fourier
transform. The criterion detecting positive measures is then
provided by Bochner’s theorem [11].

Theorem.—P̂ is a Fourier transform of a probabilistic
measure if and only if P̂ is of positive type, i.e., for each
number n and all possible sets �1; . . . ; �n 2 R2 the n� n
matrix P̂ij: � P̂��i  �j� is positive semidefinite (PSD).

The further test of P̂ij being PSD for fixed �1; . . . ; �n is
carried out using determinant criterion: a n� n matrix is
PSD if and only if determinantsDk, k � 1 . . . n of all of the
principal submatrices are nonnegative. This finally leads to
the hierarchy of conditions: a state % is nonclassical if and
only if there exist k > 2 (for k � 1, D1 � 1 due to nor-
malization) and points �1; . . . ; �k such that Dk < 0.

Our solution of the classicality-quantumness problem
follows also from the Bochner’s theorem. Note that the
condition for P̂ to be a function of positive type can be
equivalently rewritten as: P̂ is a function of positive type if
and only if for all � 2 D�R2�,

R
d2�d2�����P̂��

���� 
 0, where D�R2� is a space of smooth test func-
tions with compact support [11]. Using the convolution
theorem the last integral is equal toR
d2�P��;���j�̂���j2. From Fourier transform theory,

�̂ can be analytically continued to a function from Z�C2�,
the space of entire functions, satisfying specific bonds [12],
and every element of Z�C2� is of that form [11,12]. Hence
we obtain the criterion for classicality [13]:

Theorem.—P defines a probabilistic measure if and only
if

8f 2 Z�C2�;
Z
d2�P jfRj

2 
 0; (4)

where fR denotes the restriction of f to R2.
Our approach offers new insights into the problem, and

connects it to the methods used in the study of separability.
From (4) we obtain that a state % is nonclassical if and only
if there exists a test function f 2 Z�C2� such thatR
d2�P jfRj

2 < 0. Since fR is real-analytic this condition
can be rewritten as

tr f%:jfR�a; ay�j2:g< 0; (5)

implying that the state is nonclassical if and only if there
exists an observable :jfR�a; a

y�j2: detecting it.
Geometrically, the condition

R
d2�PjfRj

2 � 0 defines a
hyperplane in the set of all P distributions and hence a state
is nonclassical if and only if there is a hyperplane separat-
ing it from the simplex �. This is essentially the same
approach as the one used in the theory of entanglement
witnesses [14,15]. Therefore, we propose to call the ob-
servable from expression (5) nonclassicality witness. The
above approach can be generalized if we allow the test
functions f to depend on the state % in question. Then, the
observable in Eq. (5) becomes a nonlinear function of the
15360
state, and may be termed a nonlinear nonclassicality wit-
ness (compare [16]).

In the current Letter we restrict the class of investigated
states % to those, for which P can be evaluated on an
arbitrary real polynomial of x; y. The vector space of
such polynomials will be denoted by R�x; y�. Since any
polynomial can be represented as a Fourier transform of
appropriate sum of derivatives of the Dirac’s delta func-
tion, the sufficient condition for that is that P̂ is a smooth
function. We denote the space of such P’s by P .

Note, that since the test function f appearing in (4) is
entire, it can be almost uniformly approximated by a
sequence of complex polynomials on C2. Hence jfRj

2 �
limN!1�u2N 	 v2N� for some uN; vN 2 R�x; y�. The almost
uniform convergence on the real plane allows us to inter-
change integration and taking the limit in (4) [12]. This
leads to the main theorem of the present Letter:

Theorem.—A state %with P 2 P is classical if and only
if for every polynomial v 2 R�x; y�

Z
d2�Pv2 � trf%:v�a; ay�2:g 
 0: (6)

In fact the criterion (6) has already been used for a long
time for detecting some important classes of quantum
states. There are two examples of the application of (6)
known to the authors. The first one is the test for higher
order quadrature squeezing [17]: % is squeezed to the order
2k if there exists a phase � 2 �0; 2�� such that

Xk1

l�0

1

2l
�2k�!

l!�2�k l��!
h:��E��

2�kl�:i< 0; (7)

with E�: � aei� 	 ayei�, �E�: � E�  hE�i, and the
averages taken with respect to %. Obviously, (7) has the
form of a violation of (6) (we can always substitute v2

there with finite sums of such terms) with the polynomial

w2k�x; y;��: �
Xk1

l�0

1

2l
�2k�!

l!�2�k l��!
�d��x; y��

2�kl�; (8)

where

d��x;y�:� 2�xha	a
y

2 i�cos�	 2�yhaa
y

2i i� sin�: (9)

The witness w2k depends on the tested state % and hence is
a nonlinear witness.

The second example is the test for sub-Poissonian sta-
tistics of aya (number squeezing): % is number squeezed if
h:��aya�2:i< 0. The corresponding nonlinear witness is

wP�x; y�: � �x2 	 y2  hayai�2: (10)

Note that both nonlinear witnesses (8) and (10) are
optimal in the sense that they are zero on the extreme
points of �, as for any j�i all the moments of normally
ordered deviations vanish.

From (6), we observe that for any v 2 R�x; y�, v2 is
positive semidefinite (PSD), and so is every polynomial
1-2
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which is a sum of such terms (we call such polynomials
SOS polynomials). One may ask if the converse is also
true, i.e., if every PSD polynomial is SOS?

This problem has been known in mathematics under the
name of Hilbert’s 17th problem. The answer is, quite
surprisingly, negative: there are PSD polynomials which
are not SOS [6]. For the case of 3 variables this happens for
a degree m 
 6. However, the explicit examples of PSD,
but not SOS polynomials are rare and were found quite
lately. Note that the connection between Hilbert’s 17th
problem and separability was established in [18].

In light of the theorem (6), out of all PSD polynomials,
SOS polynomials are sufficient to detect nonclassical states
among the states with P 2 P . To illustrate how the theo-
rem (6) works let us consider a specific example of sixth
order Motzkin polynomial which is PSD, but non-SOS:

M�x; y; z�: � �x2 	 y2  3z2�x2y2 	 z6: (11)

Using a method originating from the witness techniques in
entanglement study [15], we construct a state %, detected
by the polynomial M�x; y;�1� [19].

Out of the four zeros f��1;�1�g of M�x; y;�1� we
construct coherent states: �1: � 1	 i, �2: � 1	 i,
�3: � ��

2, �4: � ��
1. We pick the barycentric point, ~%, of

the face F : � convf��� �1�; . . . ; ��� �4�g (conv
stands for a convex hull) of the simplex �. Note, that the
hyperplane defined by the witness :M�a; ay;�1�:

hM: � fP 2 P ;
Z
dxdyP�x; y�M�x; y;�1� � 0g; (12)

contains the face F � � and hence the witness is optimal.
Thus, to get the state detected by (11), we mix ~% with a
projector onto an arbitrary vector from its range:

%: �
1 '
4

X4
j�1

j�jih�jj 	 'j ih j; (13)

which for simplicity we choose to be:

 : �
1

N
�j�ii 	 j��

i i�; N2 � 2�1	 e2 cos�2��: (14)

Here 0 � ' � 1 and i 2 f1; 2; 3; 4g is fixed, but the results
presented below do not depend on its particular value.
Calculating the average of the polynomial (11) using the
expression (6), we obtain h:M�a; ay;�1�:i �
�2=N2�e2 cos�2�'. Since cos�2�< 0, the state (13) is de-
tected by M for ' > 0.

As a side remark, we note that the state (13) is also
detected by another example of PSD, but non-SOS
polynomial—Choi-Lam polynomial S�x; y; z�: �
x4y2 	 y4z2 	 z4x2  3x2y2z2, as h:S�a; ay;�1�:i �
�4=N2�e2 sin�2�' < 0.

Before we explicitly construct a SOS polynomial detect-
ing (13), let us first examine the physically relevant wit-
nesses (8) and (10). A simple calculation gives that
h:��aya�2:i 
 0 for any 0< ' � 1. Examination of the
15360
witnesses w2k is more difficult and we have carried it out
only numerically. We checked that up to the 14th order
(k � 7) all the inequalities (7) are violated for any � 2
�0; 2�� and 0< ' � 1 and hence (13) is not squeezed up to
the order of 14. Apart from that we used a modified version
of w4: d�1

�x; y�2d�2
�x; y�2 	 6d�3

�x; y�2, depending on
three angles �1, �2, and �3, also with no success. The
question if % has even higher order squeezing is open.

To construct a SOS polynomial detecting %, note that
M�x; y;�1� has only four zeros, and hence we can find a
second order polynomial with the same zeros, which
squared will give us the desired witness. Equivalently, we
look for such a SOS witness W that its hyperplane hW ,
defined as in (12), contains F . We choose W�x; y� �
�Ax2 	 By2 	 Cxy	Dx	 Ey	 F�2. The condition
W��1;�1� � 0 leads to a system of four linear equations
for A; . . . ; F. Its solution gives a family of witnesses
WA;B�x; y� � �Ax2 	 By2  A B�2, where A2 	 B2 �

0. The average of WA;B in the state (13) is negative if and
only if cos�2���A	 B�2  4A2� 	 4 sin�2�A�A	 B�< 0.
As this equation possesses nonzero solutions, for example
A � 0; B � 0, the state % can be detected by a fourth order
SOS polynomial.

This seems to be a generic feature, at least for the PSD
polynomials of degree m � 6. In this case from [6] we
know that if a PSD polynomial has exactly ten zeros in
PR3, than it cannot be SOS. Fixing the variable z generally
reduced the amount of zeros and hence permits to find a
lower order SOS polynomial with the same zeros.

The methods described above, together with the crite-
rion (6), can be used to classify the states according to the
degree of SOS polynomial detecting them. Let us define a
family of convex subsets of P :

Sm: �
\

w2~�m

fP 2 P ;
Z
d2�Pw 
 0g; (15)

where ~�m is the set of (inhomogeneous) SOS polynomials
of degree m. Theorem (6) implies that � �

T
kS2k. It is

also clear that ~�2 �
~�4 � � � � and hence S2 � S4 � � � � .

We prove a stronger result.
Theorem.—For any even m there exist nonclassical

states detected by some witness from ~�m, and not by any
witness from ~��m2�, that is S2 | S4 | . . . .

Proof.— Let us choose a generic w 2 ~�m. It has �m	
1��m	 2�=2 terms, as it is a sum of polynomials of degree
� m. From the variety V�w�: � f�x; y� ; w�x; y� � 0g we
pick n points �x1; y1�; . . . ; �xn; yn�, m�m	 1�=2< n<
�m	 1��m	 2�=2, such that they do not lie on any variety
of the lower order V�u�, u 2 ~��m2�. We can find such

points, as otherwise there would exist u 2 ~��m2�, such
that �x1; y1�; . . . ; �xn; yn� 2 V�u�. However, with chosen n
the latter condition leads to an overcomplete system of
linear homogeneous equations for the coefficients of u,
1-3



PRL 94, 153601 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
22 APRIL 2005
which generically possesses no solution. On the other
hand, the same condition for V�w� yields an underdeter-
mined system possessing a nontrivial solution. Having
such points we construct coherent states jx1 	
iy1i; . . . ; jxn 	 iyni and a face F n 2 � spanned by them.
For any ~% 2 F n we have then that trf~%:w�a; ay�:g � 0,
whereas trf~%:u�a; ay�:g> 0 for all u 2 ~��m2�. Hence we
can find such a convex combination % of ~% and a projector
onto some linear combination of jx1 	 iy1i; . . . ; jxn 	 iyni,
such that trf%:w�a; ay�:g< 0, while for all u 2 ~��m2�,
trf%:u�a; ay�:g 
 0 (from the continuity). �

Summarizing, we have derived a family of classicality
criteria of states of a quantum system, that require that P
representation averages of positive functions are positive.
For polynomial functions, we have related these criteria to
Hilbert’s 17th problem: we have proven the theorem that
all ‘‘generic’’ nonclassical states (for which the P repre-
sentation averages of polynomials exist), can be detected
by SOS polynomials of sufficiently high degree; in this
sense, non-SOS polynomials (whose existence was proven
by Hilbert) are not necessary for classicality detection. We
have also introduced the hierarchy of states implied by this
theorem, and have introduced convex sets S2 | S4 | . . . of
states detected by squares of polynomials of the 1st, 2nd,
..., order, and corresponding in this sense to decreasing
degree of quantumness.

We stress that our results have important experimental
consequences. Our polynomial nonclassicality witnesses
can be easily measured, allowing thus for direct detection
of quantumness and its degree for a given state. In this
sense they are similar to entanglement witnesses that are
nowadays commonly used for detection of entanglement
[20]. If one wants to check if a given state % is quantum, it
is enough to measure normally ordered averages of squares
of real polynomials of position q, and momentum p, or
quadrature operators. In order to check the degree of
quantumness (i.e., to check whether % 2 S2k), one should
determine normally ordered averages of squares of real
polynomials of the order k. Note, that for a given k this
requires measurements of finite number of averages only.
For instance, for k � 1 (squeezing), one needs to measure
hqi, hpi, h:q2:i, h:p2:i, and h:qp	 pq:i, and check if there
exist A;B;C such that h:�Aq	 Bp	 C�2:i< 0. For gen-
eral k, one needs, respectively, k�2k	 3� measurements.
Our results for the first time fully categorize states with
respect to their degree of quantumness, and generalize the
concepts of (higher order) squeezing or number squeezing
as a signature of quantumness.
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