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Laser Cooling in an Optical Shaker
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We propose a novel generic approach to laser cooling based on the nonresonant interactions of atoms
and molecules with optical standing waves experiencing sudden phase jumps. The technique, termed
‘‘optical shaking,’’ combines the elements of stochastic cooling and Sisyphus cooling. An optical signal
that measures the instantaneous force applied by the standing wave on the ensemble of particles is used as
feedback to determine the phase jumps. This guarantees a drift towards lower energies and higher phase-
space density without the loss of particles typical of evaporative cooling.
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FIG. 1 (color online). Schematic setup of the optical shaker.
Laser cooling has led to a number of remarkable
achievements, including the observation of Bose-Einstein
condensation [1]. Most current schemes for laser cooling
are based on the exchange of momentum between resonant
light and a closed atomic system consisting of few active
levels. Very few atoms obey the stringent requirements of
these resonant interactions, while most other atoms and
practically all molecules are not amenable to existing
schemes of resonant laser cooling. Moreover, the deepest
stages of cooling just prior to Bose-Einstein condensation
are usually achieved via evaporative cooling, a nonoptical
scheme in which evaporation of the ‘‘hotter’’ atoms leads
to the cooling of the rest of the ensemble and a permanent
loss of almost 99% of the initially trapped atoms [2]. The
elusive task of cooling molecules [3] has been much more
difficult. In several different recent experiments [4–9],
during evaporative cooling of fermionic atoms, dimers
were formed near Feshbach resonances and were observed
to condense to a Bose-Einstein condensate. For polar
molecules, such as NH3 and ND3, Meijer and collaborators
have demonstrated decelerating and even stopping of mo-
lecular beams by properly switched static electric fields
[10], but a general scheme is not yet available for the
cooling of molecules.

We propose a new approach to laser cooling, which
relies on nonresonant interaction of atoms or molecules
with laser fields. The method combines the idea of
Sisyphus cooling [11] and the concept of stochastic cooling
[12,13], recently considered as promising for the cooling of
neutral atoms [14]. An ensemble of precooled and trapped
atoms or molecules is allowed to interact with a ‘‘shaking’’
optical standing wave. The very simple optical setup is
depicted in Fig. 1, and consists of two nearly counter-
propagating laser beams, an electro-optic modulator to
introduce sudden phase changes to one of the beams, and
two detectors to measure the intensity of the laser beams
after they cross the interaction region.

To illustrate the principle of operation of the optical
shaker, consider a collection of N atoms that interact
with a nonresonant optical standing wave produced by
two counterpropagating laser beams [A cos�kx�!lt�
05=94(15)=153002(4)$23.00 15300
’� and A cos�kx�!lt�]. Here A is the electric field am-
plitude, ’ is the relative phase between the beams, and k �
2	=�, where � is the wavelength of light. The spatially
dependent potential energy of interaction with the standing
wave is (after a constant space-averaged term has been
dropped) V�x;’� � �V0 cos�2	x=
� ’�, where V0 �
�A2=2, 
 � �=2, and � is the nonresonant polarizability
at frequency !l. For two-level atoms of transition fre-
quency !0, the polarizability is given by � � jd12j2= �h,
where  � !0 �!l is the detuning of the transition. In
what follows, we consider high-field seeking atoms,
namely, the case of a red-detuned optical lattice (> 0).

When a particle of mass m and energy E moves in this
periodic potential, it slows down while climbing a potential
hill, and speeds up when sliding down the hill. If the energy
E exceeds the maximum value of V, the particle propagates
over many periods of the potential without changing the
total energy. Assume now that the standing wave makes a
sudden spatial displacement, such as resulting from a
sudden change of the phase ’. For a fast enough jump,
the kinetic energy of the particle remains unchanged, while
the potential energy may increase or decrease depending
on the initial position of the particle and the value of the
phase jump. In order to guarantee that the shaking de-
creases the potential energy (and hence the total energy)
of the whole ensemble of N particles, we introduce a
2-1  2005 The American Physical Society
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feedback loop that controls the value of the sudden phase
jumps. The feedback signal is proportional to the total
instantaneous force exerted by the standing wave upon
the set of N particles. This force depends on the current
value of the phase, ’, and on the spatial position of all the
particles, and is given by

F�’; t� � �
2	V0




XN
j�1

sin
�
2	xj�t�



� ’

�
: (1)

The gradient force [15] [Eq. (1)] appears because of the
scattering of photons from one of the laser beams to the
other one. Such a force can be measured by two detectors
recording the intensity of the laser beams forming the
standing wave after their interaction with the atomic sam-
ple. Because of the conservation of momentum, F�’; t� �
P�’; t�=c, where c is speed of light, and P � P1 � P2

is the difference between the power levels measured by the
detectors D1 and D2 (see Fig. 1). Similar arrangements
have been used to study atomic wave-packet motion in
optical lattices [16,17], and also for real-time feedback
control of coherent oscillations of cold atoms trapped by
a standing optical wave [18]. For a given set of atomic
coordinates xj, the force F�’; t� is a periodic function of’.
A nonzero value of the detected force indicates that the
system is not at a potential minimum, and thus may be
brought to the minimum by a proper sudden phase shift
�’, such that F�’� �’; t� � 0. It is easy to show with the
help of Eq. (1) that

tan��’� � �
F�’; t�

F�’� 	=2; t�
� �

P�’; t�
P�’� 	=2; t�

: (2)

The solution of this equation, which corresponds to the
potential minimum (not maximum), is given by

�’ � �arc tan
�

P�’; t�
P�’� 	=2; t�

�

�
	
2
f1� sgn�P�’� 	=2; t�	g: (3)

Thus, two measurements of P are needed to predict the
phase shift leading to a guaranteed energy extraction at
each jump. Remarkably, accurate knowledge of the signal
P�’; t� itself is not needed, and in order to find �’, only
the ratio of two such signals and their sign is required,
greatly simplifying the calibration of the measuring sys-
tem. Naturally, the two measurements should be performed
in rapid succession such that the atoms do not significantly
move. Immediately after a jump, the particles (on average)
climb the hills of the shifted standing wave and decrease
the average kinetic energy as well (Sisyphus cooling). To
allow for efficient cooling, the system should be allowed to
freely evolve and remix between any two consecutive
phase jumps

Let us estimate the required phase shift �’ and energy
loss E following a single phase jump. For a ‘‘well-
15300
mixed’’ ensemble of a large number N � 1 of particles,
F�’; t� presents a random process with a zero mean value
and a correlation time of the order of 
=�T , where �T is a
typical particle velocity. If the optically induced potential
is rather weak (V0 � m�2T=2), most of the particles are not
trapped by the standing wave, and travel over it almost
freely. The trigonometric sum defining F�’; t� in Eq. (1)
can be then estimated as

PN
j�1 sin�2	xj�t�=
� ’	 ���������

N=2
p

B, where B is a normally distributed random number
with zero mean value and unity variance. The value of
F�’� 	=2; t� depends on the sum

PN
j�1 cos�2	xj�t�=
�

’	, and is proportional to the potential energy of the whole
ensemble at the moment of jump. The time-dependent
potential energy may be treated again as a random process;
however, it has a nonzero mean value depending on the
strength of the potential. The corresponding sum may
be approximated in the weak-field limit asPN
j�1 cos�2	xj�t�=
� ’	  rN �

���������
N=2

p
A. Here A is an-

other random number independent of B but having the
same statistical properties. The parameter r� 1 depends
mainly on the particles with energy E� V0 whose motion
is ‘‘essentially’’ affected by the standing wave. Particles
trapped near the bottom of the potential wells span only
a limited range of the coordinate space where
cos�2	x�t�=
� ’	 � 1. On the other hand, particles mov-
ing in the upper part of the standing wave slow down near
its maxima and spend more time in the regions where
cos�2	x�t�=
� ’	 � �1. The balance of these two ef-
fects contributes to the nonzero value of the parameter r. It
can be shown that r � 0:5V0=kBT if a relatively weak
(V0=kBT � 1) one-dimensional standing wave is suddenly
applied to a thermal ensemble (kB is Boltzmann’s con-
stant). The phase shift �’ needed in order to bring the
whole system to the potential minimum and the energy loss
per particle E are given by

tan��’� � �B=��� A�; E �
1

N
V0

r
f���;

f��� �
�
2

� ������������������������������
��� A�2 � B2

q
� ��� A�

�
: (4)

Here � � r
�������
2N

p
is an important parameter that determines

the scale of the phase jumps. For � � 1 the phase shift �’
is of the order of 1 rad, while for �� 1 the phase jump
obeys �’� N�1=2, with the crossover occurring near ��
1. For a very large number of particles, the required phase
jump tends to be impractically small, which will require
the use of weaker laser fields to induce the optical standing
wave, which in turn dictates a smaller �. The possibility of
using variable field strength to optimize the process is
discussed below. The expectation value of the energy loss
per jump can be obtained by averaging E over A and B.
The averaged function hf���i behaves as �

���������
	=8

p
for very

small �, and tends to an asymptotic value of 0.25 for ��
1. This asymptotic regime can be achieved for relatively
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weak fields [r � �2N��1=2]. For a thermal ensemble and
�� 1, the averaged E reaches the saturated value
hEi � V0=�4Nr� � kBT=�2N� that is independent of
V0. This gives a rough estimate for a number of phase
jumps (� 2N) needed for a substantial cooling.

Figures 2 and 3 depict numerical simulations of optical
shaking in a harmonic trap. The amplitude of the light-
induced potential was chosen as V0 � 0:1kBT (T is the
initial temperature). Figure 2(a) displays the average par-
ticle energy (in units of kBT) as the function of the number
of controlled phase jumps. The jumps were evenly distrib-
uted in time. The time interval between them was of the
order of a period of oscillations of low-energy particles
trapped by the wave. For the chosen parameter values, the
cooling proceeds in the regime of � � 1. At the initial
stage, the mean particle energy loss per jump is of the order
of the asymptotic estimate hEi � kBT=�2N�. The rate of
cooling decreases with time as more and more particles
become trapped by the standing wave, in a good agreement
with Eq. (4), as the parameter r increases in the course of
cooling. Moreover, the numerically calculated rate keeps
the same tendency at the stages of deep cooling, where the
weak-field estimates in Eq. (4) are no longer valid. The
simulation was stopped when the rms of the phase jumps
�’ reduced to the level of about 1.5� (0.025 rad). By that
time, almost 80% of the energy was extracted from the
system. Figure 3 depicts the distribution of the particles in
the �x; p� (dimensionless) phase space (a) at the beginning
of the process, (b) after 3000 jumps, and (c) after 104

jumps. The last snapshot [Fig. 3(c)] was taken after adia-
batic switch off of the standing wave following the end of
cooling. Condensation of the particles in phase space is
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FIG. 2. Mean particle energy vs number of the controlled
phase jumps for an ensemble of N � 103 particles confined in
a harmonic trap. V0 � 0:1kBT. In (a), the phase shift is defined
by two measurements according to Eq. (4). Panel (b) represents
results for the single-measurement feedback algorithm with
�’0 � 	=10 sgn�P�.
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clearly seen as the cooling progresses. In addition, Fig. 3(b)
depicts a sizable number of particles trapped in the minima
of the standing wave (see visible vertical strips). Even after
the adiabatic release of the trapped particles from the
standing wave [Fig. 3(c)], some leftover structure may still
be observed.

A simpler feedback scheme may be employed if the
condition of a guaranteed energy loss on each step is
replaced by a milder requirement of losing the energy on
average in the course of many jumps. It requires only a
single measurement defining the sign of P (not its value),
and uses a fixed phase shift ��’0 displacing the standing
wave opposite to the direction of the instantaneous force. If
small enough, such a correlated shift will most probably
decrease the energy of the system. Using the arguments
similar to the above, we find the energy loss after a single
phase jump:
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FIG. 3. Distribution of the particles in the �x; p� (dimension-
less) phase space (a) at the beginning of the cooling process,
(b) after 3000 jumps, and (c) after 104 jumps. V0 � 0:1kBT.
Particles are confined in a harmonic trap.
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The correlation between the force direction and �’ is
reflected in the modulus sign applied to the random vari-
able B in Eq. (5). After averaging Eq. (5) over A and B, one
can easily find the optimal �’0 leading to the fastest
cooling on average: tan��’0� �

���������
2=	

p
��1. The maximal

expectation value of the energy loss per jump is given by

hEi � �V0=2Nr���
���������������������
�2 � 2=	

p
� ��. For a thermal ini-

tial state with � � 1, this yields hEi  kBT=�	N�.
Figure 2(b) depicts the results of feedback cooling of that
kind applied to the same system of particles as discussed
above. The preselected fixed value of the phase jumps
�’0 � �	=10 is close to the optimal one at the initial
temperature. Larger fluctuations are clearly observed
[compare with Fig. 2(a)], but approximately 55% of the
energy is extracted after 104 steps. Deeper cooling in this
example requires adaptive lowering of j�’0j as the process
progresses. The single-measurement scheme is, probably,
the most promising configuration for the first demonstra-
tion of the shaker cooling.

To estimate the parameters needed for successful opera-
tion of the optical shaker cooling, consider a standing wave
that is produced by two counterpropagating Gaussian
beams of power P and beam waist w0. For the atoms in
the waist region, we equate P=c to the rms force and
arrive at the following estimate for the relative signal:
P=P� 4

�������
2N

p
�=�"0w2

0. For a quasiresonant transition
in a two-level atom, �=4	"0 � �c3=!3

0��= (� is the
decay rate of the upper level). Therefore, for 106 trapped
particles irradiated by the focused laser beams (w0=��
10) acting on a far-detuned transition (�=� 10�2), in-
tensity stability of several percent is needed. Using a
standing wave of period �=2� 0:5 #m and a feedback
system with a response time of $r � 100 ns allows cooling
starting from the initial temperature of T � 15 mK�
105Erecoil (for particles having the mass of the Cs atoms).
For laser power of P� 2 #W, the estimated cooling time
is about several seconds, which is well within reported
trapping times of many hundreds of seconds. Note also
that the actual phase jump may be done on a nanosecond
time scale that is much shorter than the time between
jumps which in turn is determined by the need for efficient
remixing.

In conclusion, we have presented optical shaking as a
new approach to laser cooling by nonresonant fields. Its
main advantage is the generic nature and applicability to a
wide class of atoms and molecules, without specific re-
quirements on the level structure. Moreover, no particles
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are lost from the trap while cooling, as is the case for
evaporative cooling. It relies on a simple measurement
procedure, and involves the feedback control only over
the optical field, without any attempt to act selectively on
different groups within a broad velocity distribution. The
energy transfer from neutral particles to the laser fields is
ensured by a self-acting mechanism resembling Sisyphus
cooling. Classically, there is no lower limit to cooling by
this method, other than practical considerations such as
laser field intensity and phase fluctuations, measurement
noise, feedback loop response time, etc. Quantum effects,
which are not included in the present discussion, will
certainly limit the shaker cooling near the recoil limit. As
was pointed out above, the optical shaking is less efficient
when a large fraction of the particles being cooled has
already accumulated in the minima of the optical potential
wells. This provides a hint that adaptive lowering of the
potential during the shaking may give rise to more efficient
cooling. The search for the best cooling rate, and the
resulting optimization of the process, is the subject of our
current research.
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simulations from M. Finegold-Adler and M. Vilensky.
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