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We investigate the role played by fast quenching on the decay of metastable (or false vacuum) states.
Instead of the exponentially slow decay rate per unit volume, I'yy ~ exp[—E,/kzT] (E,, is the free energy
of the critical bubble), predicted by homogeneous nucleation theory, we show that under fast enough
quenching the decay rate is a power law I'ry ~[E,/kgT] 8, where B is weakly sensitive to the
temperature. For a range of parameters, large-amplitude oscillations about the metastable state trigger
the resonant emergence of coherent subcritical configurations. Decay mechanisms for different E, are
proposed and illustrated in a (2 + 1)-dimensional scalar field model.

DOI: 10.1103/PhysRevLett.94.151601

Introduction.—Few topics in physics have the range of
applicability of first order (or discontinuous) phase transi-
tions. From materials science to particle physics and cos-
mology, the fact that a large number of physical systems
can be described as having two phases separated by an
energy barrier has been an active topic of research for
decades [1-3]. Much of the theoretical work in this field
is derived in one way or another from the theory of homo-
geneous nucleation (HN) [1,4]. HN assumes that the sys-
tem is initially localized in a spatially homogeneous
metastable state, that is, that only small fluctuations about
the local equilibrium state ¢, exist: one computes the
partition function Z = —T In/F summing only over qua-
dratic fluctuations about ¢,,. F is the free energy, given by
the path integral [ D¢ exp[—E[¢]/T], where E[¢] is the
free-energy functional of configuration ¢. [kz = c =h =
1 throughout.] In relativistic field theory, false vacuum
decay has been examined both at zero [5] and finite tem-
perature [6] by a large number of authors [7]. In general,
the HN approximation is adopted from the start. At finite
temperatures, one uses the well-known exponential decay
rate per unit volume, I'yy = TV exp[—E,,/T], where E,,
is the free-energy barrier for the decay, or the energy of the
critical bubble or bounce, ¢,(r), the solution to the equa-
tion ¢ + d;rl ¢ = %E/f’] with appropriate boundary con-
ditions. ¢’ = d¢/dr and V[ ] is the effective potential
that sums over thermal and quantum contributions when
applicable. At T = 0, the prefactor TV is roughly ap-
proximated by M@*1) | the relevant mass scale, while E, /T
is substituted by Sg[¢,], the (d + 1)-dimensional
Euclidean action of the bounce configuration.

In the present work we examine what happens if one
relaxes the HN approximation that the initial state is well-
localized about equilibrium. We subject the system to an
instantaneous quench, equivalent to a sudden change of
potential from a single to an asymmetric double well. This
should be contrasted with the work of Ref. [8] which
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studies quenches in models with spinodal decomposition
dynamics. Although in this first study we will only con-
sider instantaneous quenches, we expect our results to
carry on at least partially to slower quenches, so long as
the quenching rate 7qyench is faster than the relaxation rate
of the field’s zero mode, 7,. With the longest wavelength
being the slowest to equilibrate, as Tqyench — 7o, the system
will remain in equilibrium. For appropriate choices of
parameters, the rapid quench will induce large-amplitude
oscillations of the field’s zero mode [9]. Because of the
nonlinear potential, energy will be transferred from the
zero mode to higher k modes. As observed in reference
[9], this transfer of energy results in the synchronous
emergence of oscillonlike configurations [10]. For small
enough double-well asymmetry, these localized field con-
figurations act as precursors for the nucleation of a critical
bubble, greatly reducing the decay time scale. In the simu-
lations we examined, the critical bubble emerges as two or
more subcritical oscillons coalesce, or, for larger asymme-
tries, as a single oscillon becomes critically unstable to
growth. If the asymmetry is too large, the field crosses
directly to the global minimum.

The Model.—Consider a (2 + 1)-dimensional real scalar
field ¢(x, t) evolving under the influence of a potential
V(¢). The continuum Hamiltonian is conserved and the
total energy of a given field configuration ¢(x, 1) is

H[$] = f dzx[%(w)z +%(V¢)2 + V(¢)} (1)

where V(¢p) = 2 2 — 23 + 4 ¢* is the potential energy
density. The parameters m, «, and A are positive definite
and temperature independent. It is helpful to introduce the
dimensionless variables ¢’ = ¢~/A/m, x' = xm, t' = tm,
and o/ = a/(m~/A) (we will henceforth drop the primes).
Prior to the quech, & = 0 and the potential is an anhar-
monic single well symmetric about ¢ = 0. The field is in
thermal equilibrium with a temperature 7. At the tempera-
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tures considered, the fluctuations of the field are well
approximated by a Gaussian distribution, with (¢?) = aT
(a = 0.51 and can be computed numerically [11]). As
such, within the context of the Hartree approximation
[12], the momentum and field modes in k-space can be
obtained from a harmonic effective potential, and satisfy
(|7 (k)1?) = T and (| p(k)|*) = T/(k> + m3), respectively.
The Hartree mass m3, = 1 + 3(¢?) depends on the mag-
nitude of the fluctuations (and thus 7). We will refer to a
particular system by its initial temperature. Results are
ensemble averages over 100 simulations.

If a # 0, the Z, symmetry is explicitly broken. When
a = 1.5 = «,, the potential is a symmetric double well,
with two degenerate minima. The quench is implemented
at t = 0 by setting & > « ., whereby the potential is asym-
metric about the barrier separating the two minima. The
Hartree approximation gives an accurate description of the
early evolution of the area-averaged field ¢,,.(7) and its
fluctuations while their distribution remains Gaussian and
the dynamics are governed by an effective potential,

Veff(d)ave) mlz-[) = |:1 - mlzi(t):|¢ave + %mzH(t)(f)gve
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The quench shifts the local minimum from ¢,,. =0 to a
positive value, but also introduces a new global minumum
to the system. [See inset in Fig. 2.]

Nucleation of Oscillons.—The quench induces oscilla-
tions in ¢,,. about the new local minimum, which even-
tually dampen due to nonlinear scattering with higher k
modes. At early times small fluctuations satisfy a Mathieu
equation in k space
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FIG. 1. Lines of constant amplification rate 7 for small-
amplitude modes at various temperatures, beginning with
Nmin = 2.8 X 1072 for the bottom-most contour and increasing
in increments of An = 1.3 X 1072
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and, depending on the wave number and parametric oscil-
lations of ¢,..(f), can undergo exponential amplification
(~ e™). In Fig. 1 we show the lines of constant amplifica-
tion rate for different wave numbers and temperatures
when a = a, and V.4 is defined by the initial thermal
distribution. At low temperatures 7 < 0.13, no modes are
ever amplified. As the temperature is increased, so is the
amplitude and period of oscillation in ¢,,., gradually
causing the band 0 < k < 0.48 to resonate and grow. A
full description of the coupled dynamics of ¢,..(f) and
Sé(x, t) when @ = a, is given in Ref. [11]. For T = 0.13,
large-amplitude fluctuations about the zero mode probe
into unstable regions where Vi <0. Note that this is
very distinct from spinodal decomposition, where compet-
ing domains of the metastable and stable phases coarsen
[1]: for the values of T and « considered, ¢,,. oscillates
about the metastable minimum until a critical bubble of the
stable phase grows to complete the transition.

These two processes result in the synchronous emer-
gence of oscillonlike configurations (Fig. 3 in Ref. [9]),
long-lived time-dependent localized field configurations
which are well described by Gaussian profiles, ¢ (¢, r) =
¢,(1) exp[—r*>/R?] [10]. To strengthen our argument, note
that within this Gaussian ansatz, an oscillon is comprised
by modes within the band 0 < k = 2/R. One of us has
recently shown that, in d dimensions and for a potential V,
the radius of an oscillon satisfies R? = d/[} (23/2/3)d x
(V"2 /v — v"] [13]. For the potential of Eq. (2) and
d = 2, we obtain that the related band of wave numbers is
0 < k = 0.66. Referring to Fig. 1, the reader can verify that
these are also approximately the modes excited by para-
metric resonance.
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FIG. 2. The evolution of the order parameter ¢,,.(f) at T =
0.22 for several values of the asymmetry. From left to right, & =
1.746, 1.56, 1.542, 1.53, 1.524, 1.521, 1.518. The inset shows
Vo for the same values.
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Resonant Nucleation.—Having established that oscil-
lons emerge after the quench, we can examine their role
as precursors of metastable decay. Unless the potential has
a large asymmetry, oscillons are typically subcritical fluc-
tuations; as will be discussed below, a critical nucleus may
appear only due to the coalescence of two or more oscil-
lons. It should be clear, however, that their appearance
renders the homogeneity assumption of HN theory inap-
plicable: the metastable background is far from homoge-
neous and the critical energy barrier must be renormalized
[14]. In other words, a rapid quench or cooling leads to
departures from the usual HN assumptions. As we describe
next, the decay rate of the quenched system may be much
faster than what is predicted by HN theory.

In Fig. 2 we show the evolution of the order parameter
dave(?) as a function of time for several values of asym-
metry, 1.518 = a = 1.746, for T = 0.22. Not surprisingly,
as a — a, = 1.5, the field remains longer in the meta-
stable state, since the nucleation energy barrier £, — 00 at
a .. However, a quick glance at the time axis shows the fast
decay time scale, of order 10'~2. For comparison, for
1.518 = @ = 1.56, homogeneous nucleation would pre-
dict nucleation time scales of order ~10%® = 7 ~
exp[E,/T] = 10'? (in dimensionless units). [The related
nucleation barriers with the effective potential are Ej,(a =
1.518) = 14.10 and E,(a = 1.56) = 5.74.] While for
smaller asymmetries ¢,..(f) displays similar oscillatory
behavior to the symmetric double well case before transi-
tioning to the global minimum, as « is increased the
number of oscillations decreases. For large asymmetries,
a = 1.746, the entire field crosses over to the global
minimum without any nucleation event, resulting in oscil-
lations about the global minimum. [See inset in Fig. 2.]

In Fig. 3 we show the ensemble-averaged nucleation
time scales for resonant nucleation, 7ry, as a function of

T I T I T I T I T I ]
/!
L [= T=0.18 o,
6 |a T=020 ey
e T=022 oK
e
5k “mw* e .
ln(TRN) n ’ ‘/
|
Lol
41 R _
P4
Axo’
Ae
./..
3_.’. | L | | L | ]

L L | L
32 34 36 38 4 42
In(E, /T)

FIG. 3. Decay time-scale 7gy as a function of critical nuclea-
tion effective free-energy barrier E,/T at T = 0.18, 0.20, and
0.22. The best fits (dashed lines) are power-laws with exponents
B =3.762, 3.074, and 2.637, respectively.

the nucleation barrier [computed with Eq. (2)], E,/T, for
the temperatures 7 = 0.18, 0.20, and 0.22. [For tempera-
tures above T = 0.26 no barrier exists.] The nucleation
time was measured when ¢,,. crosses the maximum of
Vst The best fit is a power law, 7xy « (E,/T)B, with B =
3.762 £ 0.016 for T = 0.18, B = 3.074 £ 0.015 for T =
0.20, and B = 2.637 £ 0.018 for T = 0.22. This simple
power law holds for the same range of temperatures where
we have observed the synchronous emergence of oscillons.
It is not surprising that the exponent B increases with
decreasing T, since the synchronous emergence of oscil-
lons becomes less pronounced and eventually vanishes. At
low T we should expect a smooth transition into the
exponential time-scales of HN. We next present a possible
mechanism by which the transition completes for different
nucleation barriers.

First, for @« — «,, the radius of the nucleation bubble
diverges, R, — 0. When fast quenching induces large-
amplitude fluctuations of the field’s zero mode, the system
does not approach the global minimum through a random
search in configuration space as is the case in HN. Instead,
we argue that oscillons will induce the nucleation of a
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FIG. 4. Two oscillons coalesce to form a critical bubble. First
two frames from top show oscillons A and B. Third and fourth
frames show A and B coalescing into a critical bubble. Final
frame shows growth of bubble expanding into metastable state.
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FIG. 5. Radius of critical bubble (R,) and twice the minimum
oscillon radius (2R,.) as a function of its energy barrier and
related values of « at T = 0.22. For @ = 1.547 one cannot easily
distinguish between an oscillon and a critical bubble.

critical fluctuation. The way in which this happens depends
on the magnitude of the nucleation barrier: for nearly
degenerate potentials, @, < @ < «;, the critical nucleus
has a much larger radius than a typical oscillon; it will
appear as two or more oscillons coalesce. We call this
Region I, defined for R, = 2R, where R, is the mini-
mum oscillon radius computed from Ref. [13]. Figure 4
1llustrates this mechanism. Two oscillons, labeled A and B,
join to become a critical nucleus. They diffuse through the
lattice and form bound states, somewhat as in kink-
antikink breathers in 1D field theory [15,16].

As « is increased further, the radius of the critical
nucleus decreases, approaching that of an oscillon. In this
case, a single oscillon grows unstable to become the criti-
cal nucleus and promote the fast decay of the metastable
state: there is no coalescence. We call this Region II, a; <
a =< oy, R, <2R,. This explains the small number of
oscillations on ¢,,.(?) as « is increased [cf. Figure 2]. To
corroborate our argument, in Fig. 5 we contrast the critical
nucleation radius with that of oscillons as obtained in
Ref. [13], for different values of effective energy barrier
and related values of « at T = 0.22. The critical nucleus
radius Ry, is equal to 2R, for &« = 1.547. This defines the
boundary between Regions I and II: for & = o a single
oscillon may grow into a critical bubble. Finally, for & =
oy = 1.746 the field crosses over to the global minimum
without any nucleation event.

How will the efficiency of the mechanism decrease as
Tquench — To? What happens when the quench is induced

by cooling as, for example, in the early Universe? Does the
power law behavior obtained here still hold for d = 37 We
intend to address these and related questions in the near
future.
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