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Bumps, Breathers, and Waves in a Neural Network with Spike Frequency Adaptation

S. Coombes and M. R. Owen
School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom

(Received 28 November 2004; published 14 April 2005)
0031-9007=
We introduce a continuum model of neural tissue that includes the effects of spike frequency adaptation
(SFA). The basic model is an integral equation for synaptic activity that depends upon nonlocal network
connectivity, synaptic response, and the firing rate of a single neuron. We consider a phenomenological
model of SFA via a simple state-dependent threshold firing rate function. As without SFA, Mexican-hat
connectivity allows for the existence of spatially localized states (bumps). Importantly recent Evans
function techniques are used to show that bumps may destabilize leading to the emergence of breathers
and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to
observe a stable traveling breather. Simulations confirm our theoretical predictions and illustrate the rich
behavior of this model.
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Neural field models similar to those of Wilson and
Cowan [1] or Amari [2] have been intensively studied since
the 1970s with regard to the dynamics of large scale brain
activity. This has had a major impact in helping to under-
stand not only the dynamics seen in brain slice preparations
[3] but also electroencephalogram rhythms [4], visual hal-
lucinations [5,6], short-term memory [7], motion percep-
tion [8], representations in the head-direction system [9],
and feature selectivity in the visual cortex [10]. For a recent
review of the dynamics of neural fields we refer the reader
to [11]. Typically, however, such models do not incorporate
any of the slow intrinsic processes known to modulate a
single neuron response. In this Letter we focus on the
effects of one such process, namely, spike frequency adap-
tation (SFA). SFA is a commonly observed property of
many single neurons and has been linked to the presence of
a Ca2� gated K� current, IAHP [12]. The generation of an
action potential leads to a small calcium influx that incre-
ments IAHP, with the end result being a decrease in the
firing rate response to persistent stimuli. Both biophysical
and phenomenological models of this process have been
studied in the context of neural computation at the single
cell level (see, for example, the work of Liu and Wang
[13]). In this Letter we show that SFA can also lead to
novel dynamic instabilities at the network level. To illus-
trate this, we focus on a one-dimensional neural field
model with short-range excitation and long-range inhibi-
tion, and consider a simple model of SFA.

In more detail we analyze a neural field model with
synaptic activity u � u�x; t�, x 2 R, t 2 R�, governed
by the integral equation

u � � � w �H�u� h�: (1)

Here, the symbol � represents a temporal convolution in
the sense that

�� � f��x; t� �
Z t

0
��s�f�x; t� s�ds; (2)
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and � represents a spatial convolution such that

�w � f��x; t� �
Z 1

�1
w�y�f�x� y; t�dy: (3)

The function ��t� [with ��t� � 0 for t < 0] represents a
synaptic filter, while w�x� is a synaptic footprint describing
the anatomy of network connections. The function H
represents the firing rate of a single neuron, and we take
it to be a Heaviside function such that H�x� � 1 for x 
 0
and is zero otherwise. Hence, we identify h as a firing
threshold. In the absence of an SFA current we would
recover the standard model (without SFA), by setting h
to be a constant, say, h0. To mimic the effects of SFA we
consider an adaptive threshold that changes most when
synaptic input to a neuron is large. One such simple
adaptive scheme, in the spirit of that discussed in [13],
can be written

ht � ��h� h0� � �H�u� ��; (4)

for some SFA threshold � and positive �. In fact, a linear
threshold dynamics has previously been considered in [10],
and can be traced all the way back to work by Hill in 1936
[14]. However, the form of nonlinear threshold dynamics
chosen here leads to interesting new phenomena. For the
rest of this Letter we work with the choices ��t� �
�e��tH�t� and w�x� � �1� jxj�e�jxj. The extension to
other synaptic filters and footprints is straightforward [15].

First we construct time-independent solutions �u; h� �
�q�x�; p�x�� that satisfy

q � w �H�q� p�; p �

�
h0; q < �;
h0 � �; q 
 �:

(5)

A localized bump solution is one that satisfies q�x� 

h0 � � for x2�0;x1
, �<q�x�<h0�� for x 2 �x1; x2�,
h0 � q�x� � � for x 2 �x2; x3
 and q�x�< h0 otherwise.
Furthermore, we restrict our attention to symmetric solu-
tions for which q�x� � q��x� with x3 > x2 > x1 > 0. An
explicit solution may be constructed as
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FIG. 1 (color online). Analytical bump solution �q; p� (as solid
and dashed lines, respectively) with h0 � 0:04, � � 0:1, and
� � 0:16. Here x1 � 1:48, x2 � 1:60, and x3 � 1:67. The inset
shows a blowup of the solution around the window containing
the points x1, x2, and x3. At these parameter values this type of
solution exits for � < 0:32.
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q�x� �
�Z �x2

�x3
�

Z x1

�x1
�
Z x3

x2

�
w�x� y�dy: (6)

The unknowns x1, x2, and x3 are found by the simultaneous
solution of

q�x1� � h0 � �; q�x2� � �; q�x3� � h0: (7)

A plot of an analytical bump solution constructed in this
fashion is shown in Fig. 1. It appears that for � less than
some critical value there is only ever one solution of this
type. To assess the linear stability of this solution we study
perturbations of the form u�x; t� � q�x� � �u�x; t�, and
h�x; t� � p�x� � �h�x; t�. An expansion of (1) and (4)
and working to first order generates the pair of equations

�u � � � w �H0�q� p���u� �h
; (8)

�h � �h � �H0�q� ���u; (9)

where �h�t� � e�tH�t�. HereH0 is the derivative ofH, i.e.,
H0�x� � ��x�. For perturbations of the form
��u�x; t�; �h�x; t�� � �u�x�; h�x��e�t we have that

u
L��
��� � w �H0�q� p��1� �L��h
���H

0�q� ��
u;

(10)

where we have eliminated h using (9) and introduced the
Laplace transform L��
��� �

R
1
0 dse

��s��s�. Making
use of the fact that

��q�x� � p�x�
 �
X

y��x1;�x3

��x� y�

jq0�q�1�y��j
(11)

and

��q�x� � p�x�
��q�x� � �
 �
1

�

X
y��x2

��x� y�

jq0�q�1�y��j
(12)

means that (10) takes the form
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u�x�
L��
���

�
X6
j�1

Aj�x; ��uj; (13)

where uj � u�xj� and �x4; x5; x6� � ��x1; x2; x3�,
A1�x; �� � w�x� x1�=jq

0�x1�j � A4��x; ��, A2�x;���
�L��h
���w�x�x2�=jq

0�x2�j�A5��x;��, and A3�x;���
w�x�x3�=jq0�x3�j�A6��x;��. The derivative of q is
easily calculated from (6) as q0�x� � W�x� �W��x�,
where W�x��w�x�x1��w�x�x2��w�x�x3�. Demand-
ing that the perturbations at xj be nontrivial generates an
eigenvalue problem of the form E��� � 0, where E��� �
jL��
����1I6 �A���j, In is the n� n identity matrix,
and A��� has components

A ���ij � Aj�xi; ��; i; j � 1; . . . ; 6: (14)

We identify E��� as the Evans function for the bump,
such that solutions are stable if Re� < 0. A recent dis-
cussion of the use of Evans function techniques in neural
field theories can be found in [16]. Using the fact that
L��h
�0� � 1 � L��
�0�, a direct calculation shows that
E�0� � 0 [with corresponding eigenfunction q0�x�], as ex-
pected for a system with translation invariance. By deter-
mining the zeros of the Evans function we are now in a
position to probe the manner in which a bump may go
unstable. One natural way to find the zeros of E��� is to
write � �  � i! and plot the zero contours of ReE��� and
ImE��� in the � ;!� plane. The Evans function is zero
where the lines intersect. There are basically two different
routes to instability: (i) for sufficiently small � an eigen-
value crosses to the right-hand complex plane on the real
axis, and one sees a bump go unstable in favor of a travel-
ing pulse with increasing �, and (ii) for larger � a pair of
complex-conjugate eigenvalues cross through the imagi-
nary axis to the right-hand complex plane and a bump
goes unstable in favor of a breathing solution, with increas-
ing �. These two scenarios are illustrated in Figs. 2 and 3,
respectively.

It is possible to extend this analysis to traveling wave
solutions, and, in particular, the type of solution shown in
Fig. 2. Following the approach in [16] we introduce the
coordinate " � x� ct and seek functions ~u�"; t� � u�x�
ct; t� and ~h�"; t� � h�x� ct; t� that satisfy (1) and (4). In
the �"; t� coordinates we have that

~u�"; t� �
Z 1

�1
dyw�y�

Z 1

0
ds��s�

�H�~u�"� y� cs; t� s�

� ~h�"� y� cs; t� s�
; (15)

~h�";t��h0��
Z 1

0
ds�h�s�H�~u�"�cs;t�s���
: (16)

The traveling wave is a stationary solution �~u�"; t�;
~h�"; t�� � �q�"�; p�"�� that satisfies
2-2
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FIG. 2 (color online). Top: A plot of the Evans function for a
localized bump solution at � � 0:16, and other parameters as in
Fig. 1. Zeros of the Evans function occur at the intersection of
the solid and dashed lines where ReE��� � 0 � ImE���. As �
increases through �c � 1:55, an eigenvalue crosses to the right-
hand complex plane along the real axis, signaling the onset of an
instability. Bottom: A space-time plot showing an example of a
traveling pulse seen just after the point of instability.
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FIG. 3 (color online). Top: A plot of the Evans function for a
localized bump solution at � � 0:3, and other parameters as in
Fig. 1. As � increases through �c � 3:0, an eigenvalue crosses to
the right-hand complex plane through the imaginary axis, signal-
ing the onset of a dynamic instability. Bottom: A space-time plot
showing an example of a breathing solution seen just after the
point of instability.
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q�"� �
Z 1

0
ds��s� �"� cs�; (17)

 �"� �
Z 1

�1
dyw�y�H�q�"� y� � p�"� y�
; (18)

p�"� � h0 � �
Z 1

0
ds�h�s�H�q�"� cs� � �
: (19)

We now consider traveling pulse solutions of the form
q�"� 
 � for " 2 �"1; "3
 and q�"�< � otherwise. In this
case the solution for p�"� is easily calculated from (19) as

p�"� � h0 � �

8><
>:
�1� e��"3�"1�=c
e�"�"1�=c; "< "1;
1� e�"�"3�=c; "1 � "� "3;
0; " > "3:

(20)

We further restrict our attention to traveling pulse solutions
where q�"�> p�"� for " 2 �"2; "4�, and q�"�< p�"� oth-
erwise, with "1 < "2 < "3 < "4. In this case (18) takes the
simple form

 �"� �
Z "4�"

"2�"
dyw�y�: (21)

Hence the solution for q�"� is parametrized by the five
unknowns "1, "2, "3, "4, c. By choosing an origin such that
"1 � 0, the simultaneous solution of the four threshold
crossing conditions
14810
q�"1� � �; q�"2� � p�"2�;

q�"3� � �; q�"4� � p�"4�;
(22)

may be used to determine the remaining four unknowns.
Linearizing (15) and (16) about the traveling pulse and
seeking solutions of the form �u�"�; h�"��e�t gives

u�"��A2�";���u�"2��h�"2�
�A4�";���u�"4��h�"4�
;

(23)

h�"� � A1�"; ��u�"1� � A3�"; ��u�"3�; (24)

where Ai�"; �� � �H �"i � "�; ��=jq0�"i�j for i � 1, 3
and Ai�"; �� � U�"i � "; ��=jF0�"i�j for i � 2, 4. Here,
F�s� � q�s� � p�s� and

cU�"; �� �
Z 1

0
dyw�y� "���y=c�e��y=c; (25)

cH �"; �� � ��h�"=c�e��"=c: (26)

The derivatives q0 and p0 are easily calculated as ��q�
 �=c and �p� h0 � �H�q� ��
=c, respectively. Follow-
ing along identical lines to the construction of the Evans
function for a bump we obtain E��� � jI3 �A���j � 0,
where the 3� 3 matrix A��� has components �A���
ij �
Aj�"i; ��. A straightforward calculation establishes that
�u; h� � �q0; p0� is an eigenfunction with � � 0 as ex-
pected. Interestingly, our analysis shows that stable travel-
ing pulses coexist with stable bump solutions for a wide
range of parameter values. Moreover, it is possible that a
2-3
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FIG. 4 (color online). Analytically determined width x3 of a
traveling pulse solution as a function of the synaptic rate
constant � (solid line is stable, dashed line is unstable). As �
increases through �� 1:52 the Evans function shows that a pair
of complex-conjugate eigenvalues crosses to the right-hand
complex plane. At �� 1:64 they cross back to the left-hand
complex plane. This leads to a branch of traveling breather
solutions whose width oscillates between the indicated maxi-
mum and minimum values (circles). The inset shows an example
of such a traveling breather, at � � 1:58.
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pulse can undergo a dynamic instability with increasing �
and then restabilize via the reverse mechanism. Direct
numerical simulations in such parameter windows show
the emergence of stable traveling breathers. We illustrate
this phenomenon in Fig. 4.

In fact, direct numerical simulations (for Heaviside,
sigmoidal, and threshold linear firing rate functions)
show a whole host of exotic solutions including asymmet-
ric breathers, multiple bumps, multiple pulses, periodic
traveling waves, and bump-splitting instabilities that ap-
pear to lead to spatiotemporal chaos. An example of such a
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FIG. 5 (color online). An example of a self-replicating bump
in a regime where single bumps do not exist. Parameters are
h0 � 0:02, � � 0:1, � � 0:34, and � � 0:5.
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splitting is shown in Fig. 5. It is interesting to note that
similar bifurcations have been seen in other dissipative
systems that support localized structures, in particular,
those of coupled cubic complex Ginzburg-Landau equa-
tions [17]. Moreover, the traveling pulses in our model
exhibit particlelike properties, and are reminiscent of the
dispersive solutions observed in some three component
reaction-diffusion systems [18]. Although such behavior
may well be generic in inhomogeneous neural field models
with external forcing, as in the work of Bressloff et al. [19],
to our knowledge this is the first time that exotic solutions,
such as stable traveling breathers, have been found in a
homogeneous neural field model. We attribute this inter-
esting new physics directly to the choice of nonlinear
threshold accommodation model, since linear models, of
the type studied by Hansel and Sompolinsky [10], have
shown only bump instabilities leading to traveling pulses.
Full details of the calculations in this Letter, and further
explorations of parameter space, including results in two
dimensions, will be published elsewhere.
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