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Entanglement and Factorized Ground States in Two-Dimensional Quantum Antiferromagnets
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Making use of exact results and quantum Monte Carlo data for the entanglement of formation, we show
that the ground state of anisotropic two-dimensional § = 1/2 antiferromagnets in a uniform field takes the
classical-like form of a product state for a particular value and orientation of the field, at which the purely
quantum correlations due to entanglement disappear. Analytical expressions for the energy and the form
of such states are given, and a novel type of exactly solvable two-dimensional quantum models is
therefore singled out. Moreover, we show that the field-induced quantum phase transition present in the
models is unambiguously characterized by a cusp minimum in the pairwise-to-global entanglement ratio
R, marking the quantum-critical enhancement of multipartite entanglement.
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The study of entanglement in quantum many-body sys-
tems is an emerging field of research which promises to
shed new light on our understanding of complex quantum
models. Entanglement represents indeed a unique form of
correlation that quantum states do not share with their
classical counterparts, and it thus accounts for the purely
quantum aspects of the many-body behavior. Given that
collective phenomena show up in a dramatic fashion at
phase transitions, the study of entanglement in quantum-
critical systems represents an intriguing subject [1,2]. The
main focus has been so far the study of spin-1/2 chains,
mainly because they provide paradigmatic examples of
exactly solvable quantum systems showing a quantum
phase transition [3]. Only few studies [4] have explored
models in two dimensions and higher, and it is therefore
hard to tell to which extent the behavior of entanglement
observed at one-dimensional (1D) transitions reflects uni-
versal critical features [5].

A similarly intriguing question in this framework is: can
we learn anything from entanglement that we did not know
already from conventional equilibrium observables? In
general, entanglement at 7 = 0 gives a unique insight on
the global properties of the ground-state wave function,
measuring in a sense how far the quantum ground state sits
from any possible classical counterpart. Therefore, entan-
glement is a powerful tool to detect the occurrence, con-
crete albeit surprising, of classical-like states in strongly
interacting quantum systems.

The aim of this Letter is to show that a proper analysis of
entanglement estimators, applied to interacting quantum
spin systems in arbitrary dimensions, not only exhibits
universal features at continuous quantum phase transitions,
but also unveils the occurrence of unexpected ground-state
features.
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We consider the two-dimensional (2D) antiferromag-
netic spin-1/2 XYZ model in a uniform magnetic field:

H/T =S85+ A8 + A58 = Sh- 8, (1)

() i
where J > 0 is the exchange coupling, (ij) runs over the
pairs of nearest neighbors, and h = gugH/J is the re-
duced magnetic field. For the sake of simplicity we will
hereafter understand the canonical transformation ST —
(—1)!87” with I = 1(2) for i belonging to sublattice 1(2).
Equation (1) is the most general Hamiltonian for an aniso-
tropic spin-1/2 system with exchange spin-spin interac-
tions. However, as real compounds usually display axial
symmetry, we will henceforth consider either A, =1 or
A, = 1. Moreover, we will apply the field along the z axis,
ie, h=1(0,0,h). The case Ay =1 corresponds to the
XXZ model in a longitudinal field, where no genuine
quantum phase transition occurs upon changing the applied
field.

This Letter focuses on the less investigated case A, = 1,
defining the XYX model in a field. Because of the non-
commutativity of the Zeeman and the exchange term, for
Ay # 1 this model is expected to show a field-induced
quantum phase transition on any D-dimensional bipartite
lattice, with the universality class of the D-dimensional
Ising model in a transverse field [6]. The two cases Ay <1
and A, > 1 correspond to an easy-plane (EP) and easy-axis
(EA) behavior, respectively. The ordered phase in the EP
(EA) case arises by spontaneous symmetry breaking along
the x (y) direction, which corresponds to a finite value of
the order parameter M* (M”) below the critical field A.. At
the transition, long-range correlations are destroyed, and
the system is left in a partially polarized state with field-
induced magnetization reaching saturation only as &7 — oo.
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This picture has been verified so far in D = 1 only, both
analytically [7] and numerically [8,9].

We investigate the ground-state properties of the XY X
model on a L X L square lattice making use of stochastic
series expansion quantum Monte Carlo (QMC) simulations
using a modified version of the directed-loop algorithm
[9,10] to account for the low symmetry (Z, only) of the
Hamiltonian. With this numerical approach we can reach
sizes as big as L = 28 at very low temperatures (T/J =
1/2L), such that the T = 0 limit of the model, and, in
particular, its quantum-critical behavior, is captured.

The main focus of our simulations is on entanglement
properties, analyzed through one-tangle and concurrence.
The one-tangle quantifies the entanglement between a spin
and the remainder of the system. It is defined as 7, =
4 detpV), where p!) is the one-site reduced density matrix
[11,12]. In terms of the magnetic observables, 7, takes the
simple form 7, = 1 — 4Za(M“)2, where a = x, y, z, and
M® = (§%). The one-tangle represents a global estimate of
the entanglement in a translationally invariant system,
since the vanishing of 7, is a necessary and sufficient
condition for the ground state to be factorized. The con-
currence [13] quantifies the pairwise entanglement be-
tween two spins at sites i and j. For the model of
interest, in absence of spontaneous symmetry breaking

(SSB), the concurrence takes the form [12] C;; =

2 max{0, CEJI.), Cg) }, where

1 Ioy)
Ol = i~ g+ ey el @

. 1 2 1/2
e =l + 1= [(3+ i) —or2 " o

with g = <§,-”‘S‘j’>. When SSB occurs, Syljuasen [14] has
shown that Eqs. (2) and (3) remain unchanged if the
condition Cg) < Cﬁ-jl-) is satisfied; otherwise Eq. (3) pro-
vides an upper bound for the actual concurrence.
One-tangle and concurrence are related by the Coffman-
Kundu-Wootters (CKW) conjecture [11] 7 =7, =
Zﬁinj, which expresses the crucial fact that pairwise

entanglement does not exhaust the global entanglement
of the system, as entanglement can also be stored in 3-
spin correlations, 4-spin correlations, and so on. The fact
that n-spin entanglement and m-spin entanglement with
m # n are mutually exclusive is a unique feature of en-
tanglement as a form of correlation, which puts it at odds
with classical correlations. In this respect, if the CKW
conjecture is verified, the entanglement ratio [9] R =
7,/7 < 1 quantifies the relative weight of pairwise entan-
glement, and its deviation from unity reveals in turn the
relevance of n-spin entanglement with n > 2. Although
indirect, the entanglement ratio is the only accessible
estimate of multispin entanglement that we can systemati-
cally implement at the moment.

In Fig. 1 we plot 7; and 7, for the 2D XY X model for
two values of Ay in the EP and the EA case. The most
striking feature is the nonmonotonic behavior of both
quantities as a function of the field. Although the field is
expected to suppress quantum fluctuations and entangle-
ment only in the extreme 4 — oo limit, we observe that
there exists an intermediate nontrivial value A; at which
entanglement disappears completely, since 7 is vanishing.
This signals an exactly factorized ground state in the 2D
model, completely unknown before. Above the factorizing
field h; both 7, and 7, have a steep recovery that will later
be associated with the occurrence of the quantum phase
transition. Finally, we observe that the CKW conjecture is
verified for any field value within error bars.

The behavior of the concurrence is found to be qualita-
tively the same as that observed [9] in D = 1 and we do not
report it here; however, we underline that also in D = 2 its
range stays extremely short and that, for all values of A,

studied, Cﬁjl-) and CE?) cross each other (and vanish simul-
taneously) at the factorizing field. In particular, for & > h;,

Cf-jl-) > Cg), so that Egs. (2) and (3) are accurate above the
factorizing field and all the way to the critical point.

The existence of a factorized ground state in the 1D
XYX model has been exactly proven in Ref. [15], and its
entanglement signature has been studied in Ref. [9]. The
evidence for a factorized ground state in D = 2, coming
from our QMC simulations, leads us to the 2D general-
ization of the exact proof of factorization: we were indeed
able to demonstrate that a factorized ground state exists for
the most general Hamiltonian Eq. (1) on any 2D bipartite
lattice. The proof will be soon reported elsewhere [16], but
we here outline the essential findings.

L=16, Ay=4
— =u T1 0.2
12
h

FIG. 1 (color online). One-tangle 7; and sum of squared con-
currences 7, as a function of the applied field for the 2D § = 1/2
XYX model with Ay, = 0.25 and A, = 4. The vanishing of 7,
signals the occurrence of an exactly factorized state, while its
spike signals the quantum-critical point.
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For any value of the anisotropies A, and A_, there exists
an ellipsoid in field space
2 N 2
1+A)1+4A) (A+A)A,+A)
h2
+ 2 =
(1+A)A,+4)

4 @

such that, when £ lies on its surface, the ground state of the
corresponding model is factorized, |¥) = @Y, [¢,). The
single-spin states |i;) are eigenstates of (m; - S), n, =
(cos@; sind, sing; sinf;, cosf;) being the local spin ori-
entation on sublattice /. We will hereafter indicate with A
(factorizing field) the field satisfying Eq. (4); at h = h, the
reduced energy per site is found to be e = —(1 + A, +
A.)/2. In the particular case of A, = 1 and h = (0,0, h),

the factorizing field takes the simple expression hy =

2,/2(1 + A,). As for the structure of the ground state, the
analytical expressions for ¢; and 6, are available via the
solution of a system of linear equations. The local spin
orientation turns out to be different in the EP and EA cases,

being ¢ =0, ¢, = 7, 0; = 6, = cos” ' [(1 + A))/2 for

Ay<1, and ¢ =m/2, ¢y=—m/2, 0, =0,=

cos 1 2/(1 + A)) for A, > 1.

The numerical and analytical findings for the location of
the factorizing field in the 2D XY X model as a function of
the anisotropy A, are summarized in Fig. 2. In the same
figure, we also report the line of quantum-critical fields 4,
extracted through the linear scaling of the spin-spin corre-
lation length, £&*(h = h,) ~ L. The critical scaling of the
structure factor S, (g = 0) ~ LY/*~% at the critical field is
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FIG. 2 (color online).  Phase diagram of the 2D XY X model in
a field in the easy-plane case (A, <1, left panel) and in the easy-
axis case (A, > 1, right panel). The squares are the QMC
estimates for A; and A,.

fully consistent with the best estimates for the critical
exponents of the 2D Ising model in a transverse field, z =
1,y = 1.237,and v = 0.630 [6,17]. We observe that at the
Heisenberg point A, = 1 the critical field and the factoriz-
ing field converge to the (noncritical) saturation field & =
4.

It is not clear yet, not even in the 1D case, if the
occurrence of a factorized ground state is related with
that of the quantum phase transition in these models. In
this respect we notice that the change in the analytical
expression of the concurrence from ngz_) to C§}> at h = hg
can be related to a qualitative change in the wave function
[16] at the level of the phase coherence between any two
spins. The factorized ground state could hence represent a
crucial step towards a global rearrangement of the ground
state, in view of the quantum phase transition.

Let us now move to the analysis of the critical behavior
of entanglement from the point of view of the entangle-
ment ratio R which, under the validity of the CKW con-
jecture, provides a new insight in the relative weights of
multipartite versus bipartite entanglement. Figure 3 shows
R as a function of the field for both the EP (A y = 0.25) and
the EA (A = 4) case. We observe that a pronounced dip, in
the form of a cusp, is exhibited at the critical point, signal-
ing a quantum-critical enhancement of multispin entangle-
ment involving n spins with n > 2 at the expenses of
pairwise entanglement.

The critical features of R in D = 2 are surprisingly
analogous to those exhibited in the 1D case by the same
class of models [9]. Such observation indicates a universal
scenario for entanglement at a quantum phase transition.
We specialize here to the case of second-order quantum
phase transitions, assuming that the correct estimator of
concurrence is provided by Eqgs. (2) and (3), which implies
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FIG. 3 (color online).  Entanglement ratio R = 7,/7, around
the quantum-critical point of the 2D XY X model (A, = 0.25 and
A, =4).
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that, if not vanishing, C;; = gif — ; + lg}} — gi7l. As 7
and 7, are continuous (and nonvanishing) functions around
a quantum phase transition, R is continuous as well, and its
critical behavior is best predicted from its derivative with
respect to the dimensionless control parameter, hereafter
indicated as A (A = A in the transition under investigation).

At the quantum phase transition, one of the magnet-
izations, e.g., M*, will vanish, M* ~ (A, — A)? for A —
A . Therefore, the A derivative of 7, for A < A_ contains
the term —a,(M*)*> ~ (A, — A)*#71, which diverges to
+o00 if 8 <1/2 (i.e., away from the mean-field limit). In
presence of an applied magnetic field along, e.g., the z axis,
the derivative —d,(M?)? can also be divergent, this time to
—oo. This is indeed the case for the 1D transverse Ising
model [18] where —d,(M?)?> ~ —In(A — A.). On the other
hand, in the mean-field (D = o0) limit no divergence of the
derivative is present, but only a discontinuity jump [19].
Therefore, we expect the singularity in the derivative to
become weaker when the dimensionality is increased, as
our 2D results suggest when compared with the 1D results
of Ref. [9]. This means that, within the Ising universality
class and below the upper critical dimension, 9,7, is
dominated by the power-law divergence to +oo0 of
—9,(M*)?. This is a fortiori true in the case of phase
transitions with 8 < 1/2 in which the only “singular”
magnetization is the order parameter. For A — A}, instead,
9, is either finite or, again in presence of a field along the
Z axis, it might be dominated by the divergence to —oo of
—9,(M?)?. Therefore 7, has a discontinuous derivative at
A, and, being a continuous function, it shows a cusp
maximum at the critical point. This feature witnesses the
quantum-critical enhancement of global entanglement, as
estimated through 7.

On the other hand, 7, is essentially a sum of spin-spin
correlators g&* with |i — j| limited by the very short range

of the concurrence [1,9]. It is fair to assume that 7, is
dominated by the nearest-neighbor (nn) concurrence,
which contains the most relevant features for this analysis.
In particular, the nearest-neighbor correlators building up
the nn concurrence are also the fundamental ingredients of
the energy, along with the magnetization M* in presence of
afield. Ata T = O continuous transition the first derivative
of the energy w.r.t. A is continuous, so that either the
derivative of the correlators is not singular, or, if a singu-
larity shows up in 9,M?, it has to be compensated by an
equal and opposite singularity in one of the nn correlators.
This suggests that 9, 7, is at most as singular as 9 , M*, with
the same sign of the possible singularity [1,2].

Finally, we consider 9)\R=(0,1)/7 —
7,(9,71)/(1))>. For A — A_, if B <1/2 and under the
condition of 9,M*? having a weaker singularity than
9,(M*)?, 9,R is dominated by —d,7, with a power-law
divergence to —oo. On the other hand, for A — A}, 9,R
might be nonsingular or, at most, as singular as 9, M*, with

a divergence to +00. We therefore obtain that R has de-
rivatives of opposite sign when approaching the critical
point from left and right, and, R being a continuous func-
tion, A = A, can only be a cusp minimum.

In conclusion, through a systematic study of the entan-
glement of formation, we have shown that anisotropic S =
1/2 quantum Heisenberg antiferromagnets on the square
lattice in an arbitrarily oriented uniform magnetic field
display an exactly factorized state for a given field h;
[Eq. (4)]. The existence of many real compounds whose
magnetic behavior is described by the Hamiltonian Eq. (1)
suggests the possibility of an experimental analysis of our
findings. Indeed, the existence of a classical-like ground
state with flat correlators and absence of quantum fluctua-
tions should lead to striking signatures both in the static
and dynamical observables. Finally, we have also shown
that the field-induced quantum phase transition occurring
in these systems is characterized by critical enhancement
of multipartite entanglement, in the form of a cusp mini-
mum in the pairwise-to-global entanglement ratio R. Based
on general scaling arguments, we conclude that such a cusp
in R is a universal entanglement signature of quantum-
critical points for continuous quantum phase transitions
below the upper critical dimension.
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