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Charged Particles on a Two-Dimensional Lattice Subject to Anisotropic Jahn-Teller Interactions
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The properties of a system of charged particles on a 2D lattice, subject to an anisotropic Jahn-Teller-
type interaction and 3D Coulomb repulsion, are investigated. In the mean-field approximation without
Coulomb interaction, the system displays a phase transition of first order. When the long-range Coulomb
interaction is included, Monte Carlo simulations show that the system displays very diverse mesoscopic
textures, ranging from spatially disordered pairs to ordered arrays of stripes, or charged clusters,
depending only on the ratio of the two interactions (and the particle density). Remarkably, charged
objects with an even number of particles are more stable than with an odd number of particles. We suggest
that the diverse functional behavior—including superconductivity—observed in oxides can be thought to
arise from the self-organization of this type.
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The standard theoretical models of strongly correlated
electrons, such as the Hubbard model [1] or the t � J
model [2], neglect two important interactions, namely,
long-range Coulomb repulsion and lattice distortions
caused by charged particles. Moreover, these quantum
mechanical models are typically used to study T � 0
properties. As such, these models have found limited ap-
plicability in predicting the finite-temperature functional
behavior in systems such as cuprate superconductors and
other oxides. An important aspect of the problem which
has been of great interest recently is the existence of
intrinsic mesoscale inhomogeneity in these systems, for
which there is mounting experimental evidence from neu-
tron scattering [3], x-ray-absorption fine structure spectros-
copy [4], STM [5], and time-resolved carrier dynamics [6]
amongst others [7]. There is emerging consensus that in
doped cuprates charge carriers may phase segregate to
form nanoscale textures. These are believed to be of im-
portance for achieving their functional properties, and
particularly superconductivity. The idea of charge segre-
gation in cuprates appeared soon after the discovery of
superconductivity [8–10], but in most cases, long-range
Coulomb repulsion was not considered. More recently, it
was suggested that interplay of short-range lattice attrac-
tion and long-range Coulomb repulsion could lead to the
formation of short metallic or insulating strings of polarons
[11,12]. Since an isotropic interaction cannot lead to stripe
formation we suggested instead that an anisotropic meso-
scopic Jahn-Teller interaction between electrons and k � 0
optical phonons might lead to the formation of pairs and
stripes [13]. A slightly different approach based on elas-
ticity was considered more recently for the case of man-
ganites by Kugel and Khomskii [14] using the methods of
Eremin et al. [15] and by Shenoy et al. [16]. The impor-
tance of the interplay of long-range and short-range forces
within an Ising-like model was discussed by Low et al. [17]
and in a continuous limit by Olson Reichardt et al. [18].
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The fundamental question which we try to answer here
is how charged particles order in the presence of aniso-
tropic Jahn-Teller type interaction, particularly when their
density becomes large. We consider charged particles on a
2D square lattice subject to only the long-range Coulomb
interaction and an anisotropic Jahn-Teller (JT) deforma-
tion. In the mean-field (MF) approximation without
Coulomb repulsion, the system displays a first order phase
transition to an ordered state below some critical tempera-
ture. In the presence of Coulomb repulsion, global phase
separation becomes unfavorable and the system shows
mesoscopic phase separation, where the size of charged
regions is determined by the competition between ordering
energy and the Coulomb energy. Using Monte Carlo (MC)
simulations we show that the system can form many differ-
ent mesoscopic textures, such as clusters and stripes, de-
pending only on the magnitude of the Coulomb repulsion
compared to the anisotropic lattice attraction. Surprisingly,
a feature arising from the anisotropy introduced by the
Jahn-Teller interaction is that objects with an even number
of particles are found to be more stable than with an odd
number particles, which could be significant for super-
conductivity when tunneling is included [19].

Let us consider the JT model Hamiltonian [13], and take
only the mode of B1g symmetry:

HJT � g
X

r;l

	3;lf�r��b
y
l�r � bl�r�; (1)

where the Pauli matrix 	3;l describes the electronic dou-
blet, g is a constant, and f�r� � �r2x � r2y�f0�r� where f0�r�
describes the effective range of the interaction [13].

The model is reduced to a lattice gas model by using the
adiabatic approximation for the phonon field [14,20]. The
Hamiltonian in the pseudospin (S � 1) representation is
given by:
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FIG. 1. (a) The phase diagram generated by HJT (2) with and
without the Coulomb repulsion (CR). The dashed line is the MF
critical temperature, while the full triangles (�) represent the
MC critical temperature, tcrit, without CR. The open circles ( � )
represent tcl without CR. The open triangles ( 4 ) represent tcl
while the diagonal crosses ( � ) represent the onset of clustering,
t0, in presence of CR. The cluster-ordering temperature (see
text), tco, (also including CR) is shown as crosses ( � ). The size
of the symbols corresponds to the error bars. (b) Typical tem-
perature dependencies of the nearest neighbor density correla-
tion function g*L for n � 0:18 in absence of CR (�) and in
presence of CR ( 5 ). Arrows indicate the characteristic tem-
peratures.
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HLG
JT�C �

X

i;j

��Vl�i� j�Sz
iS

z
j � Vc�i� j�QiQj�; (2)

where Qi � �Sz
i �
2, Vc�m� � e2=�0am is the 3D Coulomb

potential, e is the charge of the electron, �0 is the static
dielectric constant, and a is the effective lattice constant.
Sz � �1 corresponds to the state with n1;2 � 1, n2;1 � 0,
and Sz

i � 0 to n1 � n2 � 0. Simultaneous occupancy of
both levels is excluded due to the large on-site Coulomb
repulsion. The anisotropic short-range attraction is then
given by:

Vl�m� � g2=!
X

i

f�i�f�m� i�: (3)

A similar interaction can also be derived by considering
the interaction of the electronic doublet with the strain of
B1g symmetry, taking into account St. Venant’s compati-
bility conditions [16]. Anisotropic attraction caused by
elasticity has the form [20]:

Vl�m� � �
X

k

exp�ik 	m�
g2

2
A2 � A1U�k��
: (4)

Here, Aj are the components of the elastic modulus tensor,

and U�k� � �k2x�k2y�2

k4�8�A1=A2�k2xk2y
. Compared to (3), where the

range of the interaction was defined by the coupling to
optical phonons, the interaction (4) decays as 1=r2 (in 2D)
at large distances. Since these attractive forces decay faster
than the Coulomb repulsion at large distances, the net
potential may have a minimum at short distances.

Our goal is to study the model (2) at constant average
density of charged particles, n � 1

N

P
iQi, where N is the

total number of sites. However, to clarify the physical
picture we first consider a system with a fixed chemical
potential by adding the term �%

P
iQi to the Hamiltonian

(2).
Models such as (2) but in the absence of the long-range

forces were previously studied on the basis of the
molecular-field approximation [21]. The mean-field equa-
tions for particle density n and pseudospin magnetization
M � 1

N

P
iS

z
i then have the form [21]:

M �
2 sinh�2zVlM=kBT�

exp��%=kBT� � 2 cosh�2zVlM=kBT�
(5)

n �
2 cosh�2zVlM=kBT�

exp��%=kBT� � 2 cosh�2zVlM=kBT�
: (6)

Here z � 4 is the number of the nearest neighbors for a
square lattice in 2D and kB is the Boltzmann constant. A
phase transition to an ordered state with finite M may be of
either first or second order, depending on the value of %.
For the physically important case �2zVl < % < 0; , order-
ing occurs as a result of the first order phase transition. The
two solutions of Eqs. (5) and (6) with M � 0 and with M �

0 correspond to two different minima of the free energy.
The temperature of the phase transition Tcrit is determined
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by the condition: F�M � 0; %; T� � F�M; %; T� where M
is the solution of Eq. (5). When the number of particles is
fixed [Eq. (6)], the system is unstable with respect to global
phase separation below Tcrit. As a result, at fixed n two
phases coexist with n0 � n�M � 0; %; T� and nM �
n�M; %; T�, resulting in a liquid-gas-like phase diagram
(Fig. 1).

To investigate the effects of the long-range forces, we
performed MC simulations on the system (2). The simula-
tions were performed on a square lattice with dimensions
up to L � L sites with 10  L  100 using a standard
Metropolis algorithm [22] in combination with simulated
annealing [23,24]. At constant n, one MC step included a
single update for each site with nonzero Qi, where the trial
move consisted of setting Sz � 0 at the site with nonzero
Qi and Sz � �1 at a randomly selected site with zero Qi. A
typical simulated annealing run consisted of a sequence of
MC simulations at different temperatures. At each tem-
perature the equilibration phase (103–106 MC steps) was
followed by the averaging phase with the same or greater
number of MC steps. Observables were measured after
each MC step during the averaging phase only. For L *

20 we observe virtually no dependence of the results on the
system size.

Comparing the MC results in absence of Coulomb re-
pulsion shown by tcrit in Fig. 1 with MF theory we find the
usual reduction of tcrit due to fluctuations in 2D by a factor
of �2.

Next, we include the Coulomb interaction Vc�r�. We use
open boundary conditions to avoid complications due to
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the long-range Coulomb forces and ensure overall electro-
neutrality by adding a uniformly charged background elec-
trostatic potential ( jellium) to Eq. (2). The short-range
potential vl�i� � Vl�i��0a=e2 was taken to be nonzero
only for jij < 2 and is therefore specified only for nearest
and next-nearest neighbors as vl�1; 0� and vl�1; 1�,
respectively.

The anisotropy of the short-range potential has a pro-
found influence on the particle ordering. We can see this if
we fix vl�1; 0� � �1 at a density n � 0:2 and vary the
next-nearest neighbor potential vl�1; 1� in the range from
�1 to 1. When vl�1; 1� < 0, the attraction is ’’ferrodistor-
tive’’ in all directions, while for positive vl�1; 1� > 0, the
interaction is ’’antiferrodistortive’’ along the diagonals.
The resulting clustering and ordering of clusters at t �
0:04 is shown in Fig. 2(a). As expected, a more symmetric
attraction potential leads to the formation of more sym-
metric clusters. On the other hand, for vl�1; 1� � 1, the
’’antiferrodistortive’’ interaction along diagonals prevails,
resulting in diagonal stripes.

In the temperature region where clusters are partially
ordered, the heat capacity (cL � @hEiL=@T where E is the
total energy) displays the peak at tco. The peak displays no
scaling with L, indicating that no long-range ordering of
clusters appears. Inspection of the particle distribution
snapshots at low temperatures [Fig. 2(a)] reveals that finite
size domains form. Within domains the clusters are per-
fectly ordered. The domain wall dynamics seems to be
much slower than our MC simulation time scale preventing
domains to grow. The effective L is therefore limited by the
domain size. This explains the absence of the scaling and
clear evidence for a phase transition near tco.

We now focus on the shape of the short-range potential
which promotes the formation of stripes shown in Fig. 2(a).
We set vl�1; 0� � �1 and vl�1; 1� � 0 and study the den-
sity dependence. Since the inclusion of the Coulomb in-
-1 -0.2
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FIG. 2. (a) Snapshots of clusters ordering at t � 0:04, n � 0:2,
and vl�1; 0� � �1 for different diagonal vl�1; 1� (given in each
figure). Grey and black dots represent particle clusters in state
Sz

i � 1 and states Sz
i � �1, respectively. The preference for

even-particle-number clusters in certain cases is clearly ob-
served, for example, for vl�1; 1� � �0:2. (b) Snapshots of the
particle distribution for two densities at two different tempera-
tures t � 0:64 and t � 0:1, respectively.
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teraction completely suppresses the first order phase
transition at tcrit, we measure the nearest neighbor density
correlation function g*L � 1

4n�1�n�L2

P
jmj�1h

P
i�Qi�m �

n��Qi � n�iL to detect clustering. Here hiL represents the
MC average. We define a dimensionless temperature tcl �
kBTcl�0a=e2 as the characteristic crossover temperature
related to the formation of clusters at which g*L rises to
50% of its low temperature value. The dependence of tcl on
the density n is shown in the phase diagram in Fig. 1.
Without Coulomb repulsion Vc�r�, tcl follows tcrit, as ex-
pected. The addition of Coulomb repulsion VC�r� results in
a significant decrease of tcl and suppression of clustering.
At low densities we can estimate the onset for cluster
formation by the temperature, t0, at which g*L becomes
positive. It is interesting to note that t0 almost coincides
with the tcrit line at low n (Fig. 1).

To illustrate this behavior, Fig. 2(b) shows snapshots of
the calculated MC particle distributions at two different
temperatures for different densities. The growth and order-
ing of clusters with decreasing temperature is clearly ob-
served. At low n, the particles form mostly pairs with some
short stripes. With further increasing density, quadruples
gradually replace pairs, then long stripes appear, mixed
with quadruples, etc., Around n � 0:5, stripes prevail
forming a labyrinthlike pattern. The density correlation
function shows that the correlation length increases with
doping, but long-range order is never achieved (in contrast
to the case without Vc). Note that while locally there is no
fourfold symmetry, the overall correlation function still
retains fourfold symmetry.

To get further insight in the cluster formation we mea-
sured the cluster-size distribution. In Fig. 3 we show the
temperature and density dependence of the cluster-size
distribution function xL�j� � hNp�j�iL=�nL2�, where
Np�j� is the total number of particles within clusters of
size j. At the highest temperature, xL�j� is close to the
distribution expected for the random ordering. As the
temperature is decreased, the number of larger clusters
starts to increase at the expense of single particles.
Remarkably, as the temperature is further reduced, clusters
of certain size start to prevail. This is clearly seen at higher
densities (Fig. 3). Depending on the density, the prevailing
clusters are pairs up to n � 0:2, quadruples for 0:1 & n &

0:3, etc., We note that for a large range of vl�1; 0�, the
system prefers clusters with an even number of particles.
Odd particle-number clusters can also form, but have a
much narrower parameter range of stability [24]. The
preference to certain cluster sizes becomes clearly appar-
ent only at temperatures lower then tcl, and the transition is
not abrupt but gradual with the decreasing temperature.
Similarly, with increasing density, changes in textures also
indicate a series of crossovers.

The results of the MC simulation presented above allow
quite a general interpretation in terms of the kinetics of first
order phase transitions [25]. Let us assume that a single
cluster of ordered phase with radius R appears. As was
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FIG. 3. The temperature dependence of the cluster-size distri-
bution function xL�j� (for the smallest cluster sizes) as a function
of temperature at two different average densities n � 0:08 (a)
and n � 0:18 (b). xL�j� as a function of n at the temperature
between t0 and tcl (c), and near tco (d). The ranges of the density
where pairs prevail are very clearly seen in (d). Error bars
represent the standard deviation.
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discussed in [13,20,26], the energy of the cluster is deter-
mined by three terms: � � �F1R2 � 21R � 3R3. The
first term is the energy gain due to the ordering phase
transition where F is the energy difference between the
two minima in the free energy density. The second term is
the surface energy parametrized by 2, and the third term is
the Coulomb energy, parametrized by 3. If 2 < 1F=33, �
has a well defined minimum at R � R0 corresponding to
the optimal size of clusters in the system. Of course, these
clusters are also interacting among themselves via
Coulomb and strain forces, which leads to clusters ordering
or freezing of cluster motion at low temperatures as shown
by the MC simulations.

We conclude that a model with only anisotropic JT strain
and a long-range Coulomb interaction gives rise to a
remarkably rich phase diagram including pairs, stripes
and charge- and orbital- ordered phases, of clear relevance
to functional oxides. The energy scale of the phenomena is
defined by the parameters used in HJT�C (2). For example,
using the measured value �0 ’ 40 [27] for La2CuO4, we
estimate Vc�1; 0� � 0:1 eV, which is also the typical en-
ergy scale of the ’’pseudogap’’ in the cuprates. The robust
prevalence of the paired state in a wide region of parame-
ters [Fig. 3(c) and 3(d)] is particularly interesting from the
point of view of superconductivity. In contrast to Bose
condensation of mobile intersite bipolarons discussed by
Alexandrov and Mott [28], it has been suggested that pair
tunneling between objects such as those shown in Fig. 2
can lead to an insulator-to-superconductor transition [19].
A similar situation occurs in manganites and other oxides
with the onset of a conductive state at the threshold of
percolation, but different textures are expected to arise
from the different magnitude (and anisotropy) of Vl�n�
and static dielectric constant �0 in the different materials
[29].
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