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Numerical Evidences of Fractionalization in an Easy-Axis Two-Spin Heisenberg Antiferromagnet
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Based on exact numerical calculations, we show that the generalized kagome spin model in the easy-
axis limit exhibits a spin liquid, topologically degenerate ground state over a broad range of phase space,
including a point at which the model is equivalent to a Heisenberg model with purely two-spin exchange
interactions. We further present an explicit calculation of the gap (and dispersion) of ‘‘vison’’ excitations,
and exponentially decaying spin and vison two-point correlators. These are hallmarks of deconfined,
fractionalized, and gapped spinons. The nature of the phase transition from the spin-liquid state to a
magnetic ordered state tuned by a negative four-spin ‘‘potential’’ term is also discussed in light of the low
energy spectrum. These results greatly expand the range and the theoretical view of the spin-liquid phase
in the vicinity of the Rokhsar and Kivelson exactly soluble point.
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It has been demonstrated that electronic systems can
have fractionally quantized excitations in nature through
the discovery of the fractional quantum Hall effect
(FQHE). The possibility of such fractionalization in spin
systems, without any applied magnetic field, is a subject of
great interest. Anderson first proposed that two-
dimensional (2D) spin-1=2 antiferromagnets might con-
dense into a featureless ‘‘spin-liquid’’ quantum ground
state [1], with deconfined spinon excitations carrying
spin S � 1=2 [2,3]. In the past several years, a clear notion
of fractionalized and gapped [4] spin-liquid states
emerged. With the absence of spin ordering and spatial
symmetry breaking, such a liquid state is characterized by
‘‘topological order’’ [5,6], as in the FQHE [7]. Spinons are
subject to long-range statistical interactions with vortex-
like excitations (denoted as visons) which carry an Ising or
Z2 flux [8,9].

Theoretically a few spin models have been identified as
possible candidates for realizing such a spin-liquid phase
[10–15]. Moessner and Sondhi [12] have suggested this
might occur for some antiferromagnets on the triangular
lattice, by showing that a particular so-called ‘‘quantum
dimer model’’ on the triangular lattice is in a featureless
deconfined spin-liquid phase in a range of parameters, the
lowest excitations being identified as visons [15]. Similar
dimer models on the square lattice display a deconfined
critical point [3] separating two confined phases. However,
quantum dimer models, which have resonating valence
bond correlations built in, do not derive directly from
triangular or square lattice spin exchange models, so which
spin Hamiltonian might realize this state is currently
unclear.

Balents, Fisher, and Girvin [10] have recently displayed
a spin model on the kagome lattice, closely mathematically
related to the above triangular dimer model, which demon-
strably has a fractionalized, topologically ordered ground
state. Similarly to earlier studies on various dimer models
[12,13], fractionalization is established through mapping
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the system to an exactly soluble point, first exploited by
Rokhsar and Kivelson (RK) [3] in the square lattice. A
drawback of this approach is that the RK point requires
four-spin couplings, and topological order is argued per-
turbatively from the RK point. Reference [10] speculated,
however, that the spin-liquid state may persist to a simpler
limit describable by only two-spin Heisenberg interactions.
This central issue remains unsettled.

In this Letter, we present exact numerical diagonaliza-
tion studies of a generalized kagome spin model [10] in the
easy-axis limit (see below) which interpolates between the
RK point and a two-spin Heisenberg form—and beyond.
We have found that the spin-liquid phase persists over a
wide range of parameters including the two-spin limit. This
phase is characterized by the absence of spin ordering, and
by deconfined, fractionalized, and gapped spinon excita-
tions. The spin-liquid phase has fourfold topological de-
generacy, a finite gap to the vison excitations, and short-
range exponentially decaying spin and vison two-point
correlators. Still farther from the RK point beyond the
two-spin model, a first order transition to a magnetically
ordered phase occurs.

The model considered in most of this Letter is the
generalized spin-1=2 ring-exchange Hamiltonian:

H �
X

��

��JringS
�
1 S

�
2 S

�
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�
4 � H:c:� u4P̂flip�; (1)

where the labels 1; . . . ; 4 denote the four spins at the ends
of each bow tie (and others obtained by 120� rotations), as
labeled in Fig. 1. The additional term is a projection
operator,

P̂ flip � j "#"#ih"#"# j � j #"#"ih#"#" j; (2)

with spin states Sz1; S
z
2; S

z
3; S

z
4 indicated sequentially in the

bras/kets. This Hamiltonian acts in the reduced Hilbert
space with the constraint that for each hexagon, the total
Sz of six spins, Szx � 0. For the particular value u4 � 0,
Eq. (1) can be shown to be equivalent to the leading-order
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effective Hamiltonian describing the easy-axis limit of the
Heisenberg model,

H � 2
X

�ij�;�

J�ijS
�
i S

�
j ; (3)

where the sum is over pairs of sites �ij�, with nonzero J�ij �
J� (� � x, y, and z) for all first, second, and third nearest-
neighbor pairs �ij� on the kagome lattice (see Fig. 1).
Specifically, in the extreme easy-axis limit, Jz � J? �

Jx � Jy, Eq. (3) reduces by second order degenerate per-
turbation theory to Eq. (1) with Jring � 4J?=J

2
z and u4 �

0. The energy of states with Szx � 0 is higher by O�Jz�, and
such states require additional terms beyond those in Eq. (1)
for their description.

The exact soluble RK point corresponds to u4 � Jring.
For u4 � Jring � �, with � � Jring, the ground state is a
featureless spin-liquid state with gaps to all excitations. In
particular, the vison gap was argued variationally to be
O�Jring� [10]. We have performed exact Lanczos diagonal-
ization in the whole range of �2 � u4 � 1 (we take
Jring � 1 as the unit). Specifically, we consider a finite-
size system on the torus with length vectors ~L1 � n1 ~a1 and
~L2 � n2 ~a2, which connect identical sites [periodic bound-
ary condition (PBC)]. Here ~a1 and ~a2 are the primitive
vectors shown in Fig. 1, and we set lattice constant a1 �
a2 � 2 for convenience. Then total number of sites isNs �
3n1n2. In the constrained Hilbert space with Szx � 0, this
problem is characterized by two topological Z2 ‘‘winding
numbers,’’ �w1; w2�

wa �{k2S
z
k � �1; (4)

where, for concreteness, the product is taken on one arbi-
trarily chosen straight line of sites along the ~a1= ~a2 axis for
a � 1; 2 encircling the torus. These two winding numbers
are complete in that other winding numbers defined on
other nontrivial loops are not independent of these.

Shown in Fig. 2 is the excitation energy gap between the
lowest two states Eg � E�2� � E�1� in the topological
sector with winding numbers �1; 1�. As u4 moves away
from 1, the energy gap remains at the order of 1 and
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FIG. 1. Kagome lattice and interactions. Two primitive vectors
~a1; ~a2 are shown, as are the three two-spin couplings on sites
within a hexagon. The ring term involves four sites on a bow tie,
which is generated from two-spin virtual exchange processes.
Sublattice labeling is also shown.
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becomes much smaller only on the negative u4 side. All
curves actually cross over each other around Uc � �0:5,
and Eg overall decreases with the increasing of Ns with a
trend of going to zero in the regime u4 <Uc � �0:5. To
examine the finite-size effect of transition, we show the
slope of the Eg curve vs u4 in the inset of Fig. 2 for large
sizes Ns � 42–60. Indeed around Uc � �0:5, a strong
peak showed up in �Eg=�u4, with its height increasing
with Ns, which is suggestive towards a quantum phase
transition at Uc to a different phase with vanishing Eg.

At the RK point, a finite gap Eg is expected, related to
the excitation energy of vison excitations [10], and as just
discussed, this gap persists for Uc < u4 � URK � 1.
Visons are characterized by the Z2 flux �� � �1, which
is defined on each triangular plaquette of the kagome
lattice [10] as �4 �

Q
��24

Q
i2�� 2Sxi , where the first

product is over the three bow ties centered on the sites of
the triangle, and the second is over the sites of each bow tie.
It is simple to show that a ground state j0i of H can always
be found which is expressed as a superposition of Szi
eigenstates with positive real coefficients. This implies
that h0j�4j0i> 0; hence, there are no visons in the ground
state. One can readily show that with PBCs the product of
�4 over all triangular plaquettes (even over just all say up-
pointing triangles) is �1; hence visons (�4 � �1) can
appear only in pairs with PBCs for H . An appropriate
definition of a single vison state is made as follows. We
imagine a large open system and perform the canonical
transformation

H 0 � v̂i0H v̂i0; (5)

where v̂i0 denotes a single vison creation operator identi-
fied in Ref. [10], which is a ‘‘string’’ operator made of the
product of spins 2Szi along some path on the kagome lattice
starting at site i0 and ending at the boundary. Explicitly,
H 0 is the same as the H except that the ring-exchange
terms of the three bow ties centered on the triangle con-
taining i0 from which the path exits are changed in sign (as
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FIG. 2. The spectral gap Eg � E�2� � E�1� in the winding
sector �1; 1� as a function of u4 for sizes Ns � 36, 42, 48, 54,
and 60. In the inset, �Eg=�u4 vs u4 for Ns � 42–60 (same
symbols as in the main plot).

5-2



PRL 94, 146805 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
15 APRIL 2005
a flux tube is inserted this way). This canonical transfor-
mation redefines the Z2 flux on this triangle only by a
minus sign, �4 ! ��4; i.e., a vison on this triangle
corresponds now to �4 � �1. Imposing PBCs on H 0

(it is no longer canonically conjugate to H ) then forces
the total number of visons to be odd. Although it is not
manifest, H 0 has a hidden ‘‘magnetic’’ translational in-
variance, so there is no localization of the forced vison.
Thus the energy difference between the ground states of the
two Hamiltonians Esv � E0�0� � E�0� gives the single
vison energy. We plot Esv vs u4 in Fig. 3(a) for system
sizes Ns � 36–60.
Esv shows overall similar behavior to the spectral gap

Eg, but bigger than 0:5Eg in the vison gapped regime, in-
dicating a nonvanishing binding energy between two vi-
sons. In the vison gapped regime, we find that the low
energy manifold of H 0 forms an energy band of single
visons with very small dispersion (e.g., for Ns � 60 dis-
persion of single vison energy is about 0:047Jring at u4 �
0). Esv remains to almost constant in the regime passing
u4 � 0 and drops significantly at the u4 <Uc � �0:5
side.

To reveal the nature of the phase transition at Uc, we
present the low energy spectrum for Ns � 60 in topologi-
cal sectors �1; 1� and ��1; 1� [states in �w1; w2� with w2 �
�1 are not shown here as they are degenerate with the ones
of w2 � 1 for this cluster] by plotting �En � E�n� �
Eground vs u4 in Fig. 3(b) (where Eground refers to the lowest
state energy of the system). Clearly, in the whole range of
u4 >Uc, the lowest energy states from both sectors remain
quasidegenerate (filled up triangle; is the energy differ-
ence). At u4 <Uc, the states with different winding num-
bers along ~L1 are separated into two groups. All the low
energy states from the sectors �1; 1� go down and collapse
with the ground state. The other ��1; 1� states rise and
become well separated from the low energy manifold. This
dependence on the topological sector is evidence of devel-
oping spin long-range ordering. The phase transition be-
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FIG. 3. (a) The single vison energy Esv � E0�0� � E�0� as a
function of u4 for system sizes Ns � 36, 42, 48, 54, and 60;
(b) the low energy spectrum �En � E�n� � Eground for Ns � 60
(L1 � 5a1 and L2 � 4a2), in topological sectors ��1; 1� vs u4.
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tween the vison gapped state and the spin ordered phase
seems likely first order as Eg crosses at Uc and becomes
zero at u4 <Uc side. Theoretically, it seems possible for
such a quantum phase transition from a Z2 spin liquid to a
magnetically ordered state to be continuous [16], despite
the above contrary indications. Whether our result is par-
ticular to this model or due to the reduced XY symmetry
remains an open question.

The exponential decay of the vison-vison correlation
function is considered as the hallmark of a 2D Z2 fraction-
alized phase [8]. Following Ref. [10], we define the spin
and the vison two-point correlation functions:

Cij � 4jh0jSziS
z
jj0ij; Vij � jh0j{j

k�i2S
z
kj0ij; (6)

where j0i denotes the ground state, and the product in Vij is
taken along some path on the kagome lattice starting at site
i and ending at site j, containing an even number of sites,
and making only ‘‘�60�’’ turns left or right.

To examine the longer distance behavior, we considered
a strip geometry with ~L2 � 2 ~a2, while varying ~L1 � n1 ~a1.
A similar analysis of the spectral gap Eg and single vison
energy Esv reveals that the critical Uc for striplike samples
is slightly more negative than that for more two-
dimensional clusters, around �0:75.

The numerically calculated Cij is shown in Fig. 4 for
Ns � 66 and different u4. At u4 � 1 (RK point), Cij

clearly shows the exponential decay seen previously from
the exact wave function [10]. As u4 varies from 1 to 0,
apart from a small oscillation, we see essentially the same
exponential behavior. The data at u4 � 1 and 0 can both be
well fitted by lnCij ��jxi � xjj=% with apparently the
same correlation length % � 1:7. For u4 further decreased
to �0:4, just before the phase transition, much stronger
fluctuations emerge between xi � xj even or odd, but the
overall decay remains exponential. At u4 � �1, Cij jumps
by more than 1 order of magnitude at a longer distance
xi � xj � L1=2 � 11, and a longer range correlation is
clearly evident.
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�0:4, and �1 for a striplike system at Ns � 66.
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We analyze the finite-size dependence of the spin corre-
lation function. In Fig. 5(a), Cij with j � i� L1=2 (half-
way across the torus) is shown for relatively large sizes
Ns � 36, 42, 48, 54, 60, and 66. For u4 >Uc (around
�0:75), Cij is vanishingly small for all sizes. For u4 <
Uc, however, Cij is very weakly dependent on Ns (except
for the smallest system with Ns � 36), and it robustly
scales to a finite value at large Ns limit. This strongly
indicates long-range magnetic order. One expects this re-
gion is adiabatically connected to the u4 ! �1 limit, for
which the ground state is fully magnetically ordered state
with 4hSiSji � �1, taking the positive or negative sign if i
and j belong to the same or different sublattices, respec-
tively (see sublattices A and B labeling in Fig. 1; spins not
belonging to these two sublattices are not ordered). In the
strip geometry for large negative u4, one can show the
ground state manifold (with fourfold degeneracy) is well
separated from excited states by an energy gap of
4Jring=ju4j2, with additional ordering in the x-y plane (in
spin space), as a result of order-by-disorder phenomena. At
the critical Uc, we have also observed a very similar
change in the behavior of the vison two-point correlator
from exponential decay to the long-range correlation.

We further examine the vison and spin correlators in
more 2D clusters. We plot Cij and Vij at u4 � 0 for a
cluster of Ns � 60, with L1 � 5a1 and L2 � 4a2, vs Ri �
Rj in Fig. 5(b). Despite the very short distance across the
torus, several points indeed follow an exponential behavior
comparable with Cij for the strip with Ns � 66. Clearly, all
the correlators can be well fitted by exp��jRi � Rjj=%� (as
the dashed line in the plot) with % � 1:7.

In summary, a fractionalized spin-liquid state has been
identified for the generalized kagome spin model beyond
the RK exact soluble point, which persists over a wide
range of parameters, covering the pure two-spin kagome
Heisenberg model at easy-axis limit (u4 � 0). We have
also established a precise way of identifying a spin-liquid
14680
phase based on exact diagonalization (with and without
inserting a flux tube), which can be applied to various spin
models on other lattices. These methods can refine ap-
proximate calculations (variational and density-matrix re-
normalization group methods) suggesting the lack of dimer
ordering, finite spin gap, and possible spin-liquid behavior
in other models [17].
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