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Direct Processes in Chaotic Microwave Cavities in the Presence of Absorption
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We quantify the presence of direct processes in the S matrix of chaotic microwave cavities with
absorption in the one-channel case. To this end the full distribution PS�S� of the S matrix, i.e., S �

����
R

p
ei�,

is studied in cavities with time-reversal symmetry for different antenna coupling strengths Ta or direct
processes. The experimental results are compared with random-matrix calculations and with numerical
simulations including absorption. The theoretical result is a generalization of the Poisson kernel. The
experimental and the numerical distributions are in excellent agreement with theoretical predictions for all
cases.
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Random-matrix theory has been successfully applied to
many different scattering systems in several branches of
physics ranging from quantum mechanics and mesoscopic
physics to sound and microwave systems [1–3]. The only
precondition is the existence of chaotic ray dynamics of the
system. Nevertheless, the connection between the statisti-
cal properties of scattering and the underlying chaos is not
straightforward since scattering may involve two time
scales, namely, a prompt and a delayed response. Prompt
or direct processes are those in which the waves pass
through the interaction region without a significant delay.
In the equilibrated or delayed processes the waves suffer
several reflections inside the interaction region. The de-
layed processes are usually studied with techniques of
random-matrix theory, whereas the direct processes are
described in terms of the average of the S matrix.

Starting from the pioneering work of López, Mello, and
Seligman [4], there are several theoretical works address-
ing the statistical distributions of the S matrix with imper-
fect coupling or direct processes in the jargon of nuclear
physics [5–10]. This distribution is known in literature as
the Poisson kernel. In the one-channel case with no ab-
sorption it is possible to parametrize the S matrix as
S�E� � ei��E�, and the Poisson kernel reads

p��� �
1

2�
1� jhSij2

jS� hSij2
; (1)

where hSi is the ensemble (or energy) average of S�E�. For
hSi � 0 the distribution of the phase ��E� is uniform
between 0 and 2�, i.e., S�E� is uniformly distributed on
the unitary circle, in agreement with the circular ensembles
of random-matrix theory. Equation (1) means that the
S-matrix distribution of a system including direct pro-
cesses is fixed by the average hSi exclusively. In this
Letter, we present measurements which provide clear evi-
dence of direct processes in chaotic scattering.

Following Brouwer [8], the Poisson kernel can be inter-
preted as follows: For a chaotic system with an attached
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waveguide with ideal coupling, the distribution of the S
matrix is uniform. If the coupling in the waveguide be-
comes nonideal, then the new S matrix is distributed ac-
cording to the Poisson kernel. Thus any deviation from the
uniform distribution (random-matrix result) yields infor-
mation on the fraction of waves scattered without a sig-
nificant delay.

A direct comparison between the Poisson kernel
[Eq. (1)] and experimental results is usually not possible
due to losses or absorption. Therefore it is important to take
them into account. When absorption is present, S is a
subunitary matrix. For the one-channel case the S matrix
can be parametrized as

S �
����
R

p
ei�; (2)

where R is the reflection coefficient. The coupling between
the scattering channels and the interior region can be
quantified by the transmission coefficient Ta of a barrier
describing the direct processes:

Ta � 1� jhSij2: (3)

The subindex a will be used to denote the antenna cou-
pling. For perfect antenna coupling (Ta � 1) there are
some exact results. The phase � is uniformly distributed
between 0 and 2� as before. The distribution PR;0�R� of R
is known in the cases of strong (� 	 1) [11] and weak
(� 
 1) absorption [12] for systems with and without
time-reversal symmetry (� � 1; 2). Throughout this
Letter the subindex ‘‘0’’ refers to perfect coupling. In
case of systems without time-reversal symmetry and a
single perfectly coupled channel, the distribution PR;0�R�
was calculated for any absorption strength � by Beenakker
and Brouwer [12], as well as for two perfectly coupled
channels in the presence of time-reversal symmetry. For
systems with imperfect coupling and absorption, the dis-
tributions of the proper time delays and reflection eigen-
values are known only for � � 2 [13]. More recently, a
general distribution of the reflection eigenvalues has been
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obtained for a large number of propagating channels, in-
dependent of time-reversal symmetry [14]. Other quanti-
ties, such as probabilities of no return, distributions of
Wigner time delay have also been obtained for systems
with absorption [15,16]. From the experimental point of
view the effect of the absorption has been studied on the
S-matrix correlation function [17,18], the reflection coef-
ficient [17,19], the cross-correlation functions of the S
matrix [20], the transmission coefficient [21], and very
recently on resonance widths [22] and on the impedance
matrix [23].

Here the distribution P���� of the phase of the subuni-
tary S matrix given in Eq. (2) will be obtained. This
corresponds to a generalization of Poisson’s kernel,
Eq. (1), including absorption. Also the full experimental
distribution PS�S� of the S matrix in the presence of both
absorption and direct processes for the one-channel case is
given. Both distribution are related through P���� �R
1
0 PS�S�dR.
To derive the distribution PS�S� of the S matrix, we

consider the systems of Fig. 1. In Fig. 1(a) a system with
absorption strength � and perfect coupling (Ta � 1) is
shown. Let us denote the S matrix describing the scattering
in that case by S0 �

������
R0

p
ei�0 . We assume that the distri-

bution PS;0�S0� of S0 is known. Actually, it is sufficient to
know the distribution of the reflection coefficient PR;0�R0�
under the assumption that R0 and �0 are still uncorrelated
when absorption is present. As we mention above, the
phase is uniformly distributed in the case of perfect cou-
pling and no absorption, i.e.,

PS;0�S0� �
1

2�
PR;0�R0�: (4)

Just as for systems without absorption, the S matrix of the
system with direct processes and absorption given by
Eq. (2) can be written in terms of the S matrix of the
system with absorption but without direct processes, S0,
and the S matrix of the barrier Sa that describes the non-
ideal coupling of the antenna [see Fig. 1(b)]. As a model
[8,9], we take the S matrix of the barrier to be
T    a

T  =1a

N=10

a
0N=1

(b)(a)

S
S

SS γγ

FIG. 1. Sketch of the model for scattering with direct pro-
cesses and absorption. In (a) S0 describes the scattering of a
billiard with absorption � but perfect coupling to the lead (Ta �
1). In (b) we associate the S matrix Sa given by Eq. (5) to the
barrier that describes the nonideal coupling. The resulting S
matrix of the system with absorption � and coupling Ta can
be written in terms of S0 and Sa.
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Sa �
�

���������������
1� Ta

p ������
Ta

p

������
Ta

p ���������������
1� Ta

p
� �

: (5)

The combination rule of S matrices gives the following
relation between S and S0:

S0�S� �
S� hSi
1� hSiS

; (6)

where hSi �
���������������
1� Ta

p
[see Eq. (3)]. Then the distribution

PS�S� for the system including direct processes is PS;0�S0�
times the Jacobian of the transformation (6). The result is

PS�S� �
��������
@�R0; �0�
@�R; ��

��������PS;0�S0�;

�

�
1� hSi2

j1� ShSij2

�
2 1

2�
PR;0�R0�; (7)

where R0 � jS0j
2. The distribution PR;0�R0� is known for

several cases [11,12]:

PR;0�R0� �

8>><
>>:

exp���=�1�R0��

�1�R0�
3 �A
B�1�R0��; �� 2;

Ce��=�1�R0�=�1�R0�
2
�=2; �
 1;

�e��R0 ; �	 1;

(8)

where � � ��=2, A � ��e� � 1�, B � �1
 �� e��,
and C � �1
�=2=��1
 �=2�. In the first case of Eq. (8)
FIG. 2. The phase � of the S matrix for different coupling and
absorption regimes: (a) � � 0:56, Ta � 0:116 (weak absorption,
weak coupling), (b) � � 2:42, Ta � 0:754, (c) � � 8:40, Ta �
0:989, and (d) � � 48:00, Ta � 0:998 (strong absorption, nearly
perfect coupling). On the right-hand side, the Argand diagrams
show Im�S� versus Re�S�.
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the absorption can take any value, whereas in the other
cases � can take any value. As our experimental results are
for a time-reversal system, we need the distribution for
� � 1. An approximate distribution for � � 1 was given
in Ref. [13], which is valid, however, for intermediate and
strong absorption only. The interpolation formula

PR;0�R0��C�
e��=�1�R�

�1�R�2
�=2
�A��=2�1
B�1�R��=2�; (9)

with C� � �A��1
 �=2; ��=�2 
 Be��=���1, satisfies
all cases of Eq. (8). Here ��x; �� �

R
1
� tx�1e�tdt is the

upper incomplete Gamma function. The deviation between
the interpolation formula Eq. (9) and numerical simula-
tions (� � 1) are of the order of a few percent. A number
of tests had been performed in [24]. In all cases a good
agreement was found. Notice that the theory presented here
is rigorous for the imperfect coupling or direct processes;
only the ansatz given by Eq. (9) for the absorption is
heuristic.

The experimental setup was described in Ref. [19]. The
following two systems were investigated: (i) a half Sinai
billiard and (ii) a half Sinai billiard with a microwave
absorber attached to one side. To improve statistics, in
both cases the semicircle was moved along the wall in
steps of 5 mm to obtain more than 50 measurements. The
complex S matrix was measured with a vector network
analyzer. We investigated four different regimes also con-
sidered in Ref. [19] ranging from weak absorption and
weak coupling (� � 0:56, Ta � 0:116) to strong absorp-
tion and nearly perfect coupling (� � 48, Ta � 0:998).
FIG. 3. Distribution of the S matrix for the same ranges of coupli
correspond to experiment, numerics, and theory, respectively. Note
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The one-channel case is realized due to the fact that only
a single antenna is attached with a radius much smaller
than the wavelength.

In Fig. 2 we plot the phase � of S as a function of the
frequency and the corresponding Argand diagrams of the
scattering matrix S for different coupling and absorption
regimes. The experimental value of Ta is obtained directly
from the mean value of the S matrix by Eq. (3). The
measured value of hRi then fixes the absorption strength
�, which decreases monotonically as a function of hRi and
vice versa.

To test the theoretical and experimental results, we made
numerical simulations based on random-matrix theory. We
expressed the S matrix as

S�E� � 1� 2�iWy�E�H 
 i�WWy��1W; (10)

where H is taken from the Gaussian orthogonal ensemble
and W gives the coupling between the resonant modes of
the cavity and the channel states. E is related to the
electromagnetic frequency � by Weyl’s formula. More
details can be found in Refs. [19,25].

In Fig. 3 we plot the experimental distributions of the S
matrix for the same cases as in Fig. 2. The numerical
distributions are also included in order to test the theoreti-
cal ones based on Eqs. (4), (7), and (9). An excellent
agreement between theory, numerics, and experiment is
found. Finally, in Fig. 4 we show the distribution P���� for
the different regimes of absorption and antenna coupling.
The numerical simulation is included as well as the theo-
retical results obtained by integrating Eq. (7) numerically.
ng and absorption of Fig. 2. The upper, central, and lower rows
the change of scales for R and �.
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FIG. 4 (color online). Experimental distribution P�;T��� (his-
togram) for the same regimes of coupling and absorption as
given in Fig. 2. Additionally, the numerical (crosses) and the
theoretical (solid line) is plotted as well. The dotted curves
correspond to the Poisson kernel without absorption [see
Eq. (1)].
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Again an excellent agreement is found for Figs. 4(a)– 4(c).
The deviations in the case of strong absorption and nearly
perfect coupling Ta � 0:998 [Fig. 4(d)] are due to the fact
that the distribution P���� depends very sensitively on the
coupling parameter Ta. Already a slight change of Ta to
0.996 improves the agreement between theory and experi-
ment considerably. In addition, the coupling Ta changes
within the investigated frequency range, which was not
taken into account in the theory.

In conclusion, we have shown experimental evidence of
direct processes in the scattering of chaotic microwave
cavities in the presence of absorption. This was done by
(i) obtaining the experimental distribution of the S matrix
for various regimes of absorption and antenna coupling in
the one-channel case, (ii) obtaining the same distributions
numerically, and (iii) presenting a theory that generalizes
Poisson’s kernel to include absorption. Excellent agree-
ment between theory, numerics, and experiment was ob-
tained in all regimes of absorption and antenna coupling.
Very recently an exact expression for PR;0�R0� has been
derived deviating only slightly from the approximation
given in Eq. (9) [26]. Direct processes can thus be deter-
mined by deviations from the uniform distribution of the
phases even in the presence of absorption.
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