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Accumulation of Three-Body Resonances above Two-Body Thresholds
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We calculate resonances in the three-body system with attractive Coulomb potential by solving
homogeneous Faddeev-Merkuriev integral equations for complex energies. The equations are solved
using the Coulomb-Sturmian separable expansion method. This approach allows us to study the exact
behavior of the three-body Coulomb systems near the threshold. A negatively charged positronium ion is
used as a test case. In addition to locating all previously known S-wave resonances of the positronium ion,
we also find a large number of new resonant states that accumulate just slightly above the two-body
thresholds. The pattern of accumulation of resonant states above the two-body thresholds suggests that
probably they are infinite in number. We conjecture that this may be a general property of the three-body
system with an attractive Coulomb potential.
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The common method for calculating resonant states in a
quantum mechanical system is based on the complex ro-
tation of coordinates. The complex rotation turns the reso-
nant behavior of the wave function into a bound-state-like
asymptotic behavior. Then, standard bound-state methods
become applicable also for calculating resonances. The
complex rotation of the coordinates has no effect on the
discrete portion of the spectrum. At the same time, the
branch cut in the complex energy plane, which corresponds
to scattering states, is rotated, and the resonant states from
the unphysical sheet become accessible.

In practice, the complex rotation technique is combined
with a variational approach. The rotation in the complex
energy plane turns the continuum into a set of discrete
states. The points of the now discrete continuum scatter
around the rotated-down straight line in the energy plane. It
then becomes difficult, in particular, near the threshold, to
decide whether a point is a resonant-state point or it
belongs to the rotated continuum. A difficulty implicit in
the variational calculation is related to the fact that the state
is approached from above—hence, a resonance slightly
above the threshold may easily evade detection.

Recently, we have developed a method for calculating
resonances in the three-body Coulomb system by solving
homogeneous Faddeev-Merkuriev integral equations [1]
using the Coulomb-Sturmian separable expansion method
[2]. As a test case, we calculated the resonances of the
negative positronium ion. We also learned that in the case
of attractive Coulomb interactions, Faddeev-Merkuriev
integral equations may produce spurious resonances [3].
These spurious states can be singled out by varying the
parameters introduced by the necessity of splitting the
potential.

As we improved our skills in applying our method, more
and more true new resonant states, all just slightly above
the two-body thresholds, came to light. They are all aligned
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along a line in the complex energy plane pointing towards
the two-body threshold. The pattern of accumulation of
resonant states is very suggestive that there are infinitely
many resonances all accumulating at the two-body thresh-
old of the three-body Coulomb system. Since our method
of calculation is relatively new we outline the basic con-
cepts in the first part of the article. In the later part we
explain the numerical techniques involved. Finally we
specialize to the e�e�e� system and present our findings.
For further details see Refs. [2,3].

The Hamiltonian of a three-body atomic system is given
by

H � H0 � vC1 � vC2 � vC3 ; (1)

where H0 is the three-body kinetic energy operator. The
potential vC� denotes the Coulomb potential in the subsys-
tem �, where � � 1, 2, 3. We use the usual configuration-
space Jacobi coordinates x� and y�—coordinate x� cor-
responds to pair �
;�� and y� connects the center of mass
of �
;�� to particle �. As a result, the potential vC�,
between particles 
 and �, depends only on the coordinate
x�.

The Hamiltonian (1) is defined in the three-body Hilbert
space. The three-body kinetic energy after the center-of-
mass motion is separated, is given by

H0 � h0x� � h0y� � h0x
 � h0y
 � h0x� � h0y� ; (2)

where h0 is the two-body kinetic energy. The two-body
potential operators are formally embedded in the three-
body Hilbert space as vC � vC�x�1y, where 1y is a unit
operator in the two-body Hilbert space associated with the
y coordinate.

In Merkuriev’s approach to the three-body Coulomb
problem [1] the Coulomb interaction is split, in the three-
body configuration space, into short-range and long-range
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terms

vC� � v�s�� � v�l�� ; (3)

where the short-range and the long-range parts are defined
via a splitting function:

v�s�� � vC���x�; y��; (4)

v�l�� � vC��1� ��x�; y���: (5)

The splitting function � is defined such that

lim
x;y!1

��x; y� �
�
1; ifjxj< x0�1� jyj=y0�

1=�

0; otherwise
(6)

where x0 and y0 are positive constants and � > 2.
Therefore, in the region of the three-body configuration
space where particles 
 and � are close to each other,
v�s�� � vC� and v�l�� � 0; otherwise v�l�� � vC� and v�s�� � 0. It
is common to use the functional form ��x; y� � 2=f1�
exp��x=x0�

�=�1� y=y0��g. Typical forms of the short-range
potential v�s� and the long-range potential v�l� are given in
Fig. 1.

In a typical atomic three-particle system, two particles
always have electrical charges of the same sign. Let us
denote these two particles by 1 and 2; the third particle is
denoted by 3. In this case the potential vC3 is a repulsive
Coulomb potential and it does not support two-body bound
states. This means that the potential vC3 can be considered
as long-range potential. The Hamiltonian can then be
written formally in a form which looks like a usual three-
body Hamiltonian with two short-range potentials

H � H�l� � v�s�1 � v�s�2 ; (7)

where the long-range Hamiltonian is defined as

H�l� � H0 � v�l�1 � v�l�2 � vC3 : (8)

The Faddeev method is now applicable. In this case it
implies that the wave function can be written as a sum of
two components

j�i � j 1i � j 2i: (9)

The components are defined by j �i � G�l��z�v�s�� j�i,
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FIG. 1 (color online). The short-range and long-range poten-
tials, v�s� and v�l�, for an attractive Coulomb potential.

14320
where � � 1,2 , G�l��z� � �z�H�l���1, and z is a complex
number.

In the case of the bound and resonant states the wave-
function components satisfy the homogeneous, two-
component Faddeev-Merkuriev integral equations

j 1i � G�l�
1 �z�v�s�1 j 2i; (10)

j 2i � G�l�
2 �z�v�s�2 j 1i: (11)

Equations (10) and (11) are valid for both, real and
complex energies. The Green’s function G�l�

� is the resol-
vent of the channel long-range Hamiltonian: G�l�

� �z� �
�z�H�l�

� ��1, where H�l�
� � H�l� � v�s�� .

Further simplification follows when we take into ac-
count the fact that particles 1 and 2 are identical and
indistinguishable. For two identical particles, the Faddeev
components j 1i and j 2i, in their own natural Jacobi
coordinates, have the same functional form. We use this
fact to simplify the wave-function equations further. Let P
be the permutation operator of particle indices 1 and 2. Its
eigenvalues are p � �1. We can write, j 2i � pP j 1i.
This implies that we can completely determine j 1i from
Eq. (10). Equation (10) now takes the form:

j 1i � G�l�
1 v

�s�
1 pP j 1i: (12)

It is important to emphasize that Eq. (12) is exact. Despite
the fact that the integral equation (12) has only one com-
ponent, it correctly takes into account the complete asymp-
totic and symmetry properties of the system.

We solve Eq. (12), using the Coulomb-Sturmian sepa-
rable expansion method. The Coulomb-Sturmian (CS)
functions are defined by

hrjnli �
�����������������������������������
n!=�n� 2l� 1�!

p
�2br�l�1e�brL2l�1

n �2br�;

(13)

where n and l are the radial and orbital angular momentum
quantum numbers, respectively, and b is the size parameter
of the basis. The CS functions fjnlig form an orthonormal
discrete basis in the radial two-body Hilbert space with
respect to measure r�1. For the ease of writing we define

hrj enli � hrjnli=r.
The three-body Hilbert space is a direct product of two-

body Hilbert spaces. Therefore, an appropriate basis is
simply the direct product of two, two-body angular mo-
mentum bases,

jn�l�i1 � jnli1 � j��i1; �n; � � 0; 1; 2; . . .�; (14)

where jnli1 and j��i1 are associated with the coordinates
x1 and y1, respectively. In this basis the completeness
relation takes the form

1 � lim
N!1

XN
n;��0

j gn�l�i11hn�l�j � lim
N!1

1N1 : (15)
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FIG. 2 (color online). Analytic structure of gx1 �E� i"�
z0�gy1 �z

0� as a function of z0, " > 0. The Green’s operator
gy1 �z

0� has a branch cut on the �0;1� interval, while gx1 �E�

i"� z0� has a branch cut on the ��1; E� i"� interval and
infinitely many poles accumulated at E� i" (denoted by dots).
The contour C encircles the branch cut of gy1 such that a part of
it goes on the unphysical Riemann sheet of gy1 (indicated by the
dotted line) and the other part detours away from the cut. The
branch cut and some of the poles of gx1 (depicted by dots) are
lying on the physical Riemann-sheet. Other poles (depicted by
circles) are lying on the unphysical Riemann-sheet of gy1 . The
contour as shown avoids the singularities of gx1 .
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Next, we make the following approximation in Eq. (12)

j 1i � G�l�
1 1N1 v

�s�
1 pP1N1 j 1i: (16)

In writing the Eq. (16) we approximated the operator
v�s�1 pP in the three-body Hilbert space by a separable
form,

v�s�1 pP � lim
N!1

1N1 v
�s�
1 pP1N1 � 1N1 v

�s�
1 pP1N1

�
XN

n;�;n0;�0�0

j gn�l�i1v�s�1 1h
gn0�0l0�0j; (17)

where v�s�1 � 1hn�l�jv
�s�
1 pP jn0�0l0�0i1. Utilizing the

properties of the exchange operator P these matrix
elements can be written in the form v�s�1 � p�

���l
0

1hn�l�jv
�s�
1 jn0�0l0�0i2.

Approximations described by (16) and (17) enable us to
turn the process of solving Eq. (12) into solving the matrix
equation

f�G�l�
1 �z���1 � v�s�1 g 

1
� 0 (18)

for the component vector  
1
�1h gn�l�j 1i, where G�l�

1 �

1h
gn�l�jG�l�

1 j gn0�0l0�0i1. A unique solution exists if and only
if Fredholm determinant of the system vanishes,

D�z� � detf�G�l�
1 �z���1 � v�s�1 g � 0: (19)

To determine the location of resonances, we need to search
for the zeros of determinant D�z� in the complex energy
plane.

The Green’s operator G�l�
1 is related to the three-body

Coulomb Hamiltonian H�l�
1 . At first sight, the Hamiltonian

H�l�
1 appears to be as complicated as the original

Hamiltonian H. However, closer inspection reveals that
the only possible two-body asymptotic configuration for
H�l�

1 occurs when particles 2 and 3 form a bound state and
particle 1 is at infinity. The corresponding asymptotic
Hamiltonian is

eH 1 � H0 � vC1 : (20)

Therefore, in the spirit of the three-potential formalism [4],
the Green’s function G�l�

1 is related to the matrix elements

of the resolvent eG1�z� � �z� eH1�
�1 via solution of a

Lippmann-Schwinger equation,

�G�l�
1 ��1 � � eG1�

�1 �U1; (21)

where eG1 � 1h
gn�l�j eG1j

gn0�0l0�0i1 and U1 �

1hn�l�j�v
�l�
2 � vC3 �jn

0�0l0�0i1.
What remains now is to calculate the matrix elementseG1. The Green’s operator eG1 is a resolvent of the sum of

two commuting Hamiltonians: eH1 � hx1 � hy1 , where
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hx1 � h0x1 � vC1 �x1� and hy1 � h0y1 . Two commuting
Hamiltonians, hx1 and hy1 act in different two-body

Hilbert spaces. Therefore, the operator eG1 can be written
as a convolution integral of two-body Green’s matrices:

eG 1�z� �
1

2!i

I
C
dz0g

x1
�z� z0�g

y1
�z0�; (22)

where gx1�z� � �z� hx1�
�1 and gy1�z

0� � �z0 � hy1�
�1.

The contour of integration C is taken counterclockwise
around the continuous spectrum of Hamiltonian hy1 in
such a way that the Green’s function gx1 is analytic on
the domain encircled by C. The appropriate integration
contour which satisfies the analyticity of Green’s function
gx1 for resonant-state energies with z � E� i�=2 is de-
picted in Fig. 2.

The required CS matrix elements of the two-body
Green’s operators in the integrand are known exactly in
analytic form for all complex energies (see [4] and refer-
ences therein). From this follows that all thresholds that
correspond to poles of g

x1
are at the right location irre-

spective of the value of N used in the separable expansion.
To calculate the energy of a resonant state we have to

find a complex zero of the Fredholm determinant D�z� of
Eq. (19) near the branch cut. To achieve this goal we
calculate the determinant D�z� numerically along the real
axis. We then use these numerically calculated values to
form a Pade-type rational function approximation of D�z�.
Next we look for zeros of the numerator polynomial. If a
particular complex zero of the numerator polynomial is
close to the real axis then D�z� may have a zero on the
second Riemann sheet. This signals that we should look for
a complex zero in the neighborhood of this location. Here
1-3
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FIG. 3 (color online). Accumulation of resonances above the
two-body thresholds. The energies are expressed in atomic units
and measured from the three-body breakup threshold.
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we used the method proposed in Ref. [5]. Pick three
arbitrary complex points, z1, z2, and z3 in such a neighbor-
hood and calculate f1 � D�z1�, f2 � D�z2�, and f3 �
D�z3�. The location z4 of the complex root is estimated
to be at the location given by

z4 �
z1�z2 � z3�=f1 � z2�z3 � z1�=f2 � z3�z1 � z1�=f3

�z2 � z3�=f1 � �z3 � z1�=f2 � �z1 � z1�=f3
:

(23)

We now make replacements: z1 ! z2, z2 ! z3, and z3 !
z4, and calculate new z4. This procedure is pursued until
D�z4� becomes sufficiently small. The described operation
is very fast, provided the initial values are close to some
zero. In our case this condition is met. To be sure that we do
not miss any zeros we use the argument theorem in com-
plex analysis [6]. The number NC0 of zeros of a function
D�z� analytic inside and on a simple closed curve C0 in a
complex plane is given by

1

2!i

I
C0
D0�z�=D�z�dz � NC0 ; (24)

where C0 is the perimeter of the domain. To calculate
integral of Eq. (24) we use the code NZERFZ from the
CERN Program Library [7].

As an application and test case we considered the
S-wave resonances of the well studied e�e�e� system
[8]. Calculations were carried out with three entirely differ-
ent sets of parameters: x0 � 18 and y0 � 50, x0 � 25 and
y0 � 50, x0 � 5 and y0 � 1000, and � � 2:1. We used a
basis consisting of N � 20 CS radial states and angular
momentum channels up to l � � � 10. In all cases we
found that the calculation converged well and that the
results are insensitive to the choice of CS parameter b
over a broad interval. In this case the basis for the separable
14320
expansion of the potential has �N � 1�2 � �lmax � 1� �
212 � 11 � 4851 elements. We also recalculated the reso-
nance results with N � 25 basis states. We found numeri-
cal agreement to about 5–6 digits. The resonant energies
are stable against the changes in x0 and y0 parameters.
They also exhibit a remarkable 5–6 digits stability.

Using the new technique described in this Letter we have
located all the previously known resonances of e�e�e�

system. We also found several new resonances near the two
particle threshold. Careful analysis of this energy region
reveals that the systems posses a large number of such
resonance states, (Fig. 3). All resonant states of the system
lie along a line pointing toward the two-body threshold
energy. This suggests strongly that the two-body energy
threshold is the accumulation point of resonances.

This conclusion is also supported by our previous study
of the e� �H system [9]. In the study of e� �H system
we observed rapid oscillations of the scattering cross-
section just above the n � 2 two-body threshold.
Preliminary resonant-state calculations in the e� �H sys-
tem using the present method also suggests that resonant
states are located at precisely those complex energies
where the scattering cross section oscillates rapidly. As
in the system presented in this article, resonant states
appear to accumulate near the system two-body threshold.
This strongly suggests that the appearance of the infinite
number of resonant states near the two-body threshold is a
general feature of the three-body system with attractive
Coulomb interaction.
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