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Exact Time-Dependent Exchange-Correlation Potentials for Strong-Field Electron Dynamics
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By solving the time-dependent Schrödinger equation and inverting the time-dependent Kohn-Sham
scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory
for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact
exchange-correlation potential can be related to derivative discontinuities in stationary density-functional
theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly im-
proves the description of the ionization process.
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Time-dependent density-functional theory (TDDFT)
[1,2] is a well established approach to the calculation of
excitations in many-electron systems. One of its very
attractive features is that not only the linear but also the
nonlinear and the nonperturbative response [3–6] can be
calculated efficiently. TDDFT thus allows one to access on
a first-principles basis the regime of strong-field dynamics
that is becoming ever more important due to the rapid
progress in laser technology. The need for a computation-
ally tractable yet accurate theory is also particularly urgent
here because the computational cost of ab initio wave-
function methods, which are already expensive for
ground-state calculations, simply becomes overwhelming
in the nonperturbative, time-dependent case.

In analogy to ground-state DFT, TDDFT is in prin-
ciple exact, but in practice one needs approximations for
the time-dependent exchange-correlation (xc) potential
vxc�r; t�. It incorporates the many-body effects into the
theory and is thus the central quantity in TDDFT. So far,
applications of TDDFT rely almost exclusively on the
‘‘adiabatic approximation’’; i.e., one feeds the time-
dependent density into a known ground-state functional
and hopes that this gives a reasonable description of the
dynamics. Using continuum functionals, this approach has
met impressive successes as well as dramatic failures. In
this Letter we investigate the strong-field double ionization
of the helium atom as one of the most prominent examples
of complete failure [7–9], and also a particularly severe
one since, as stated above, it is the strong-field dynamics
where TDDFT in principle has huge advantages and is
most urgently needed.

It is well established by experiment [10,11] and theory
[7,8,12–14] that in laser-induced ionization of noble-gas
atoms, electron correlations lead to a substantial enhance-
ment of the double-ionization yield in the region of low
laser intensities (‘‘nonsequential ionization’’). Conse-
quently, the transition from nonsequential to sequential
ionization appears as a famous ‘‘knee structure’’ [10,11]
in the intensity dependence of the double-ionization proba-
bility. Serious efforts were made to investigate this effect
using TDDFT [7–9,15]. But no matter which of the known
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functionals was employed, all calculations failed to repro-
duce the knee even qualitatively. From the two TDDFT
problems—having to approximate vxc and the functional
for the ionization probability—we focus on the former,
since a mean-field way of calculating the ionization yields
leads to a knee structure if the exact density is used [8,9].
Double ionization has thus become a paradigm example
for the failure of vxc approximations.

The aim of this Letter is to analyze this failure by
constructing the exact time-dependent vxc�r; t�. As dem-
onstrated below, our analysis reveals that there is a con-
nection between the time-dependent xc potential of the
two-electron system and the ground-state xc potential of
a system with noninteger particle number between 2 and
zero. Thus, the qualitative failure of previous TDDFT
calculations for the He double ionization can be under-
stood in terms of the integer derivative discontinuity of
ground-state DFT [16] which is missing in the continuum
approximations that were employed so far. We will see that
incorporating the discontinuity greatly improves the de-
scription of the ionization process.

Two hurdles must be taken for generating an exact xc
potential: A quasiexact density must be calculated and an
algorithm is needed that allows one to construct the Kohn-
Sham (KS) potential (the effective single-particle poten-
tial) corresponding to a given density. Along these lines the
exact static KS potential of ground-state DFT has been
calculated [17–19]. For the time-dependent case, however,
apart from pioneering works [20,21] little has been
achieved so far since both of the above-mentioned steps
are significantly more complicated. Even for a simple
system like the He atom, solving the two-body three-
dimensional time-dependent Schrödinger equation is a
computational task that stretches the capacities of modern
computers to their limits, and, in particular, this is the case
for the long-ranged dynamics that is associated with the
strong low-frequency fields generated by the lasers typi-
cally used in experiments. Also the inversion that leads
from the density to the potential is more difficult in the
time-dependent case since one has to work with complex-
valued KS orbitals.
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In order to circumvent the problems with the full-
dimensional two-electron Schrödinger equation, we work
instead with a reduced-dimensional model which is moti-
vated by the nearly one-dimensional nature of the strong-
field dynamics. The He model atom in an electric field E�t�
is described by the Hamiltonian

H �
X
j�1;2

�p2
j

2m
� v0�zj; t�

�
�W�z1 � z2� (1)

with electron coordinates z1; z2, momenta p1; p2, and the

soft-core interaction W�z� � e2=
��������������
z2 � 1

p
. The external po-

tential is v0�z; t� � �2W�z� � ezE�t�. This model has
been demonstrated to capture the essential physics of the
He double-ionization process [7,8,13,22,23].

The spin degrees of freedom are omitted and the spatial
wave function is taken to be symmetric under exchange of
electrons; i.e., a singlet configuration is chosen. The time-
dependent Schrödinger equation i �h@�=@t � H� is solved
numerically by means of the split-operator method [24] on
a grid that is chosen large enough to contain the entire wave
function. From the two-electron wave function, we calcu-
late the density and current

n�z; t� � 2
Z

j��z; z0; t�j2dz0; (2)

j�z; t� �
2 �h
m

Re
Z

���z; z0; t�
@
i@z

��z; z0; t�dz0: (3)

TDDFT replaces the system of interacting particles by a
system without electron-electron interaction that is re-
quired to have the same density as the interacting system.
This KS system evolves under the influence of an effective
single-particle potential

vs�z; t� � v0�z; t� � vh�z; t� � vxc�z; t�; (4)

where vh�z; t� �
R
n�z0; t�W�z� z0�dz0 is the Hartree po-

tential. The xc potential vxc�z; t� is defined by Eq. (4) and
can be split into its exchange (vx) and correlation (vc)
parts.

According to the Runge-Gross theorem [1], the KS
potential is determined up to a purely time-dependent
constant by the initial state and the time-dependent density.
The initial KS state �s0 must be chosen such that it
reproduces the initial density and time derivative of the
initial density of the interacting system [20]. In our case,
we describe each of the two electrons by the same initial
orbital ’0�z�, i.e., �s0�z1; z2� � ’0�z1�’0�z2�, and with
this choice, both electrons are described by the same KS
orbital ’�z; t� for all times. We then have vx�z; t� �
�vh�z; t�=2, and the orbital can be written as

’�z; t� �
������������������
n�z; t�=2

p
ei��z;t�: (5)

The phase � can be calculated up to a time-dependent
constant from the relation j � jKS, i.e.,

@��z; t�=@z � �m= �h�j�z; t�=n�z; t�; (6)
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where the current and density are taken from the exact
solution. After the construction of the KS orbital, the KS
potential is obtained by inversion of the split-operator time
propagator:

vs�z;t���
�h
2�t

arcsinIm
e�iT�t=�h’�z;t��t�

e�iT�t=�h’�z;t��t�
�const; (7)

where T is the single-particle kinetic-energy operator. The
operators e	iT�t= �h are applied by multiplication in momen-
tum space. An appropriate time-dependent constant is
added to the resulting potential to enforce the boundary
condition vs�z; t� ! 0 for z ! 1. Once we have obtained
vs, we easily calculate the Hartree-exchange-correlation
potential vhxc � vs � v0, which contains all effects due to
the electron-electron interaction, and the correlation po-
tential vc � vhxc � vh � vx.

We consider the ionization of the correlated two-
electron atom by an external dc electric field, starting
from the two-electron ground state. Field-induced ioniza-
tion is the first stage of the recollision mechanism [25]
which appears to be responsible for nonsequential double
ionization [26,27]: after single-electron ionization, the out-
going electron is driven back by the laser field and knocks
out or excites the second electron. In our model calcula-
tion, the direction of the field is chosen such that the
electrons can escape towards z ! 1. To avoid numerical
problems with strongly accelerated electrons, the inter-
action with the field is truncated at a distance of zt �
35 a:u: from the nucleus; i.e., v0�z;t���2W�z��eztE�t�
for z > zt. The field is ramped up over a time interval of
27 a.u. (0.65 fs) to a maximum value E0 � 0:141 (cor-
responding to the peak amplitude of a laser pulse with
7� 1014 W=cm2 peak intensity) and is held constant
afterwards.

The left-hand side of Fig. 1 shows on a logarithmic scale
the calculated electron density at equally spaced instants in
time. Initially, the system is in the ground state. At later
times, the field drives part of the density towards z ! 1. It
is apparent from the plot that the decay is exponential. On
the right-hand side of the figure, we plot the corresponding
potentials vhxc and vc. At t � 0, the correlation part is
small, indicating that an exchange-only treatment could be
reasonable. In the course of time, however, we observe a
dramatic increase in the correlation potential and, finally,
vhxc develops a pronounced plateau in the region around
the nucleus followed by a steplike structure.

To understand this time evolution we estimate the num-
ber of bound electrons by integrating the density over the
interval jzj< a � 5 a:u: For the four instants shown in
Fig. 1, Nb�t� �

R
a
�a n�z; t�dz � 2:000, 1.228, 1.032, and

1.004. This indicates that the probability for removal of the
second (more tightly bound) electron is negligible and that
the plateau and step appear when the removal of the first
electron is nearly completed.

We argue that the step is essentially the same as the
discontinuity [16] �xc that in ground-state DFT is known to
3-2
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FIG. 2. Static potentials vhxc�z� (solid curves) and vc�z�
(dashed curves) for ground states with noninteger electron
number 1� �. (a) � � 0:5; (b) � � 0:1; (c) � � 0:0001.
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FIG. 1. Density n�z; t� and potentials vhxc�z; t� (solid curves),
vc�z; t� (dashed curves) at various times during the interaction of
the two-electron atom with a static field. (a),(e) t � 0;
(b),(f) t � 108 a:u:; (c),(g) t � 215 a:u:; (d),(h) t � 323 a:u:
[The oscillations around z � �10 a:u: are artifacts due to the
vanishing density which leads to very small numbers in the
denominators of Eqs. (6) and (7) and thus makes reliable
reconstruction of the potential impossible.]
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appear in the xc potential when the electron number passes
through an integer N:

�xc � lim
�!0

fvxc�r�jN�� � vxc�r�jN��g: (8)

To corroborate this idea, we calculate the exact static
potentials for noninteger electron numbers 1� � in our
model atom. Here, the exact density n1���z� is obtained
from the one- and two-electron ground-state densities n1�z�
and n2�z� as

n1���z� � �1� ��n1�z� � �n2�z�; (9)

and inserting the KS orbital ’�z� �
���������������������������������
n1���z�=�1� ��

p
into

the stationary single-particle Schrödinger equation yields
the KS potential

vs�z� �
�h2

m
1

2’�z�
d2’�z�

dz2
� const: (10)

The result is shown in Fig. 2 for three different occupation
numbers. With decreasing �, we observe a behavior that
resembles closely the time-evolution in field-induced ion-
ization: when one of the two electrons is almost removed, a
plateau in vhxc is formed and a ‘‘softened’’ step appears. As
the electron number approaches unity from above, the step
becomes sharper, moves farther out, and for distances far
from the center, the plateau is built exclusively from vc.
Numerically we cannot follow this process arbitrarily close
to � � 0, but it is clear that the step will reach infinity as
� � 0 is reached. Requiring that the potential should tend
to zero at infinity then enforces a downward shift of the
potential by an amount corresponding to the height of the
14300
step; i.e., the potential jumps discontinuously by a con-
stant. The same behavior has been observed for the exact
KS exchange potential [28,29]. The difference is that here,
the step is in the correlation potential since our electrons
are of opposite spin and thus not coupled by exchange.

In view of the physics of the ionization process it is clear
that the derivative discontinuity must play a prominent
role. As one electron leaves the system, the remaining
electron is bound much more strongly. But since both
electrons occupy identical KS orbitals, the difference in
the ionization potentials can come only through the deriva-
tive discontinuity. This reasoning is supported by the fact
that in our calculations, the height of the plateau is found to
be in good agreement with the difference � between the
ionization potentials I� � 1:48 a:u:, I0 � 0:75 a:u: of the
one- and two-electron systems. � is known as the deriva-
tive discontinuity of the total energy in ground-state DFT
and obeys the relation � � �KS � �xc [30], where �KS is
the energy difference between the lowest unoccupied and
the highest occupied KS orbital of the N-electron system.
In our case (N � 1), �KS � 0 leads to � � �xc in agree-
ment with our numerical results.

In the following, we show that a double-ionization knee
is reproduced in a TDDFT calculation where we introduce
a quasidiscontinuous behavior ‘‘by hand.’’ A simple ap-
proximation for the correlation potential that captures the
relevant physics is

vc�z; t� � �c�Nb�0�=Nb�t��� 1��vh�z; t� � vx�z; t��; (11)

where c�x� � x=�1� e50�x�2�� and Nb�t� again estimates
the number of bound electrons. The purpose of Eq. (11) is
to initially compensate for the loss of bound electrons: in
the regime 1<Nb�t� � 2, we have c � 2=Nb�t�. Around
Nb�t� � 1, the function c�x� goes quickly to zero, causing a
sudden change in the ionization potential and thus mim-
icking the derivative discontinuity. The parameter 50 was
chosen just to provide a fast change; any other similarly
large number will lead to practically the same results.
Using the functional Eq. (11), we perform TDDFT calcu-
lations for our model atom subject to trapezoidally shaped
8-cycle 780 nm laser pulses with two-cycle turn-on and
turn-off times. The single- and double-ionization probabil-
ities P1 and P2 at the end of the propagation are obtained
via the single-particle approximation [8,9] P1 � Nb�1�
Nb=2�, P2 � �1� Nb=2�2. Within our TDDFT approach,
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FIG. 3. Probabilities for laser-induced single- ionization (open
symbols) and double ionization (filled symbols) from TDDFT
(circles) and TDHF (squares) calculations.
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the time-dependent Hartree-Fock (TDHF) method is re-
covered by setting vc � 0.

In Fig. 3 we compare the intensity dependence of the
single- and double-ionization yields obtained with Eq. (11)
to TDHF results. While the single-ionization result is quite
similar to TDHF, the double-ionization signal exhibits a
clear knee structure which is absent in the TDHF curve.
Thus, we see that a TDDFT calculation can produce a
double-ionization knee similar to exact two-electron cal-
culations [8,31].

In summary, we have calculated the exact time-
dependent KS potential for the strong-field ionization of
a two-electron system. Our calculations show that the
derivative discontinuity plays an important role for the
correct description of the ionization process. The correla-
tion potential takes care of the fact that the singly charged
ion is much harder to ionize than the neutral atom, and that
the chemical potential changes discontinuously when the
electron number passes through an integer. Conventional
approximations for the xc potential such as the local-
density approximation do not incorporate the derivative
discontinuity but replace it by a smooth interpolation be-
tween the two ionization potentials. This ‘‘averaging out’’
of the discontinuity is at the heart of why conventional
approximations do not produce a knee in the double-
ionization probability. Including the derivative discontinu-
ity, even in a rather simple-minded way, corrects this fail-
ure of TDDFT. This shows that TDDFT can describe
situations which so far have been regarded as beyond its
capabilities, and it stresses the importance of the further
development of functionals that include the discontinuity.
The time-dependent optimized effective potential [32] ap-
pears as a promising concept that may allow one to take the
time-dependent discontinuity into account in a natural way.
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