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We propose a protocol for deterministic communication that does not make use of entanglement. It
exploits nonorthogonal states in a two-way quantum channel to attain unconditional security and high
efficiency of the transmission. We explicitly show the scheme is secure against a class of individual
attacks regardless of the noise on the channel. Its experimental realization is feasible with current

technology.
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The transmission of secret information along a physical
channel is doubtless one of the most attractive perspectives
related to the late developments of quantum physics. The
pioneering works of Bennett-Brassard (BB84) [1] and
Ekert (E91) [2] showed how to exploit quantum resources
for cryptographic purposes. Specifically, the usage of ei-
ther nonorthogonal quantum states (BB84) or entangle-
ment (E91) allows for a secret generation of a random
key through which legitimate users can accomplish a thor-
oughly private communication. This task is usually re-
ferred to as quantum key distribution (QKD). Later on,
the two schemes were demonstrated to be equivalent [3],
and this stimulated the research toward a general security
proof (for a review see [4]).

In a recent Letter [5] Bostrom and Felbinger proposed a
protocol for private communication, called ping-pong (PP)
for its peculiar use of a two-way quantum channel. In PP
entanglement is exploited to attain a deterministic trans-
mission of information. This avoids the waste of qubits
arising from basis reconciliation, and allows for a number
of new tasks besides QKD such as direct communication
(DC) [6] and quantum dialogue [7]. Unfortunately, PP was
proved to be not secure [8,9]. Since then, several protocols
have been introduced to solve this problem [10], but none
of them quantifies the amount of tolerable noise under
which the communication remains secure.

In this Letter we introduce a novel communication pro-
tocol that achieves secure deterministic communication
without resorting to entanglement. The transmission’s
safety is ensured by the nonorthogonality of the states
traveling forward and backward on the quantum channel.
A ““double control” against eavesdropping provides a high
security threshold in the presence of noise.

Our protocol is depicted in Fig. 1. The user “Bob”
prepares a qubit in one of the four states |0), |1) (eigen-
states of Pauli operator Z), |+), |—) (eigenstates of Pauli
operator X), and sends it to his counterpart “Alice.” With
probability ¢ Alice measures the prepared state (control
mode) or, with probability 1 — ¢, she uses it to encode a bit
(message mode). After that she sends the qubit back to
Bob. Encoding is realized by the following transformations
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on the qubit state [11]: identity operation I encodes ““0,”
while operation iY = ZX encodes “1.” Notice that i} acts
as a spin flip on all the beginning states:

iY(|0), [1) = (=1, 10)),  i¥([+), [=) = (=) —[+)).

In this way Alice does not need to know the incoming state
to perform the encoding. In turn, Bob can deterministically
decode Alice’s message by measuring the qubit in the same
basis he prepared it, without a demand for a classical
channel. Avoiding the use of a classical channel during
message mode increases both the security and the effi-
ciency of the protocol, as we show hereafter. Further-
more, notice the multitask aspect gained from determin-
ism: in principle Alice can transmit either a meaningless
random string of symbols, performing a QKD, or a mean-
ingful one, like the message itself, performing a DC.

To guarantee the security of the scheme, Alice has to
switch to control mode with probability ¢ # 0. In this
modality she performs a projective measurement on the
incoming qubit along a basis randomly chosen between Z
and X. Then, she sends the projected qubit back to Bob. In
turn, after declaring on the classical channel receipt of the
qubit, Bob carries out his own measurement exactly as he
would do if Alice had decided on a message mode (ac-
tually, he still does not know Alice’s choice). At this point,
Alice reveals on the classical channel whether or not she
measured (and in which basis), and a public debate on
results is settled with Bob in the former case. If Eve is not
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FIG. 1. Scheme of the communication protocol.
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on the line a perfect ‘““double correlation’ (on the forward
and backward path) of measurement outcomes must be
found by legitimate users. The failure of even only one
of the two correlations is a signature for Eve’s presence.
The “double” control mode described above includes
two single tests on the quantum channel, each of which is
equivalent to that performed in the one-way BB84 [1,4].
This entails at once the unconditional security of our
scheme. However, let us now envisage a simple eavesdrop-
ping strategy to show how our double control increases the
security of the protocol. Suppose Eve, to learn Alice’s
operation, decides to perform projective measurements
on both paths of the traveling qubit, randomly choosing
the measuring basis between Z or X. She can guess the

correct basis with 50% probability, and in this case she is
\

[0} &) = [0 ego) + I 1)leq1) = VFIONEq0) + VDI &),

not detected at all. If otherwise Eve chooses the wrong
basis, she still has a 50% probability to evade detection at
point E; (Fig. 1) and 50% at point E,, leading to an overall
25% probability to remain undetected. This means that the
double test of Alice and Bob reveals Eve with an average
probability (0 + 3/4)/2 = 3/8 = 37.5%, while if they had
limited to single tests, either on the forward or on the
backward path, this would have been 25%.

In the following we introduce a class of attacks in order
to cope with the problem of QKD on a noisy channel, with
the aim of finding out some security threshold for this
issue. To do that we follow the line sketched in [4] but
with some relevant differences. Given the initial four
states, and Eve’s ancillary states |g), we can write the
most general operation Eve can do on the traveling qubit as

[)e) = [0)le10) + [1)ley) = VDIO)E o) + VFIIE,),

[-+)le) — %[|0>(|Soo> + lep) + [D(leq) + len)] = [H)ler ) + [-)le o),

72

[—)e) — Lz[|0>(|800> —le) + [D(leqr) — lep)] = [H)le—y) + [—)e__). (D

5

Ancillary states are neither orthogonal nor normalized;
states with tildes are instead normalized. The following
conditions make the transformations (1) unitary:

(eooleoo) + (eoileq) =F + D =1,
(erolerg) t{enlen)=D+F=1, ()
(eolero) + (eorler) = 0.

We can set, without loss of generality (gyleg;) =
(e10ler1) = (egole10) = (go1l€11) = 0. Furthermore, we
specify the angles between nonorthogonal vectors as
(Egol&11) = cosx and (&(;|&;) = cosy with 0 =x, y =
a/2. All these steps are perfectly equivalent to those
considered in [4] for individual nonorthogonal attacks in
BB84. However, in [4] symmetry arguments lead one to
assume F = (gyylegy) = (e+4+le4+4) for the states of
Egs. (1). This reasoning is not applicable here: the absence
of a public basis revelation forces Eve to break the sym-
metry, deciding by herself the bases of ancillary states. In
this way, the fact that a classical channel is unnecessary to
the encoding-decoding stage affects the security of the
protocol. The next step is to consider that at point £, Eve
performs a nonorthogonal attack similar to that at point £,
but with fresh ancillae |7) (hence, new parameters F’ and
D'):

10)1m) — VF'0)4300) + VD11l 7jon),
|DIn) — VD' 0) 710} + VF[)71,),
|+ = [ Hne ) + [ =)nio),
| =)y = [m-) + [ =)n—-).

3)

‘At the end of transmission Eve will measure & and 7
ancillae and, by comparing results, she will gain informa-
tion. Although this is not the most general operation Eve
can do on the whole, it is worth being studied because its
consequences are quite general. We want to recover Eve’s
optimal eavesdropping strategy, i.e., determine parame-
ters’ values that maximize Alice-Eve and Bob-Eve mutual
information (7 45, Jpg) minimizing the probability of de-
tecting Eve (P,). From transformations (1) and conditions
(2) we can evaluate the probability that Eve is not detected
in the forward path, after her E; attack, simply by squaring
the coefficients of the states that remain unaltered after
Eve’s action:

P,4(10)) = (ggolego) = (e11le11) = Puu(l1)) = F,
P,y(|+)) = P,,(|=)) = (1/2)[1 + Fcosx + Dcosyl.  (4)

Similar arguments hold for the backward path, after the E,
attack, with primed parameters replacing not-primed ones.
The probability that Eve is not detected after a whole run is
then the product of the two partial probabilities; by taking
its complement we obtain the probability of detecting Eve.
Averaging it over all input states we get

P, = (1/8){7 — 4FF' — Fcosx — Dcosy — F’ cosx’
— D' cosy’ — FF' cosxcosx’ — FD' cosx cosy’
— DF' cosy cosx’ — DD’ cosy cosy'}. (5)
It is possible to show [12] that P, takes the minimum
d=minP; =[1 — (1 + cosx)(1 + cosx’)/4]/2  (6)

for F = F' = 1; this condition represents the best Eve can
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do to conceal her presence. The maximum value for d (d =
3/8) is obtained when x = x' = /2, corresponding, as we
will see, to Eve’s maximum information.

To evaluate I, let us write the state prepared by Bob as
W) =3 1—01Cala), with C, = a, (1 — a) for basis Z,
and 1/+/2, (—1)%/+/2 for basis X. Now, suppose we are in
message mode and Alice wants to encode a “0”’; hence,
she performs the identity between Eve’s two attacks:

W= S CS IB)ealm—S C. S 1Bep)
@ B @ B

XIS €S M leap)np,).
By

a

The ancillary states involved in this operation are

|800y 1700), |800y 7701>, |801’ 7710>: |801y 1711>,

)

|810y 7700>, |81o, 7701>y |811, 7710>y |811r7111>-

If, instead, Alice performs a flip operation we have

WS C S IB)eaplmy ™S €S (—1)F!
a B @ B

1B@ Dle.m=S CS (=D [n)leapl nigen,):
By

o

and ancillary states involved are

|800y ”710)» |800y 7711>, |801’ 7700>: |801y ”701)»

|810r”710>» |810:7711>, |811’ 7700>: |811y ”701>~

To acquire information from states (7) and (8), Eve must
measure both her ancillae. Keeping in mind orthogonality
relations (2) and following, we see that the best way to do
that is to distinguish orthogonal subspaces before, and then
nonorthogonal states within, them. The probability to cor-
rectly distinguish between two states with scalar product
cosx is (1 + sinx)/2 [4]. Observing states (7) and (8) we
notice that if Eve mistakes to identify her first ancilla
(e states) then she guesses wrong Alice’s operation, since
she flips from states (7) to (8) or vice versa. The same is
true if she guesses the right & state but mistakes the 7 state.
Nevertheless, if she mistakes twice, then with the first error
she misinterprets (7) with (8) and with the second error she
compensates for the first, eventually guessing right Alice’s
operation. This leads to a lengthy expression for J,; as a
function of the six parameters describing ancillae states,
but it can be simplified recalling that Eve wants to keep P,
as low as possible, and so the condition F = F' = 1 seen
before applies. In this case Eve’s strategy is optimal and
I .5 becomes

T,z =1—h[(1 + sinxsinx’)/2], 9)

where £ indicates the Shannon binary entropy [4]. Now we
would like to express the information I 4z as a function of
the detection probability d only, but the presence of two

parameters (x and x') in Egs. (6) and (9) prevents us from
doing that. However, the following lemma holds:

Lemma. The optimal Eve incoherent attack consists in a
balanced one for which x = x'.

This lemma can be justified with a qualitative argument
[12]. The degree of orthogonality Eve imposes on her
ancillae is somewhat related to the information she can
extract from the qubit: the more orthogonal they are, the
higher is the information gained. If she sets x > x/, the
ancillae & will be more orthogonal than ancillae 7, and this
entails a loss of information when going from the forward
to the backward path. If she sets x < x’, we can argue the
reverse. Then x = x’ follows.

The above lemma with Egs. (6) and (9) leads to

d=1[1-(1/4)(1 + cosx)?]/2, (10)

T, =1—Hh[(1 +sin’x)/2]. (11)

Now it suffices for a simple inversion to write J,, as a
function of d. Similar arguments hold for Iz, whose
expression as a function of x is

1 1 sin?2x 1 sin’x
=_|2—h(s+ — b=+ ,
Ige 2|:2 h<2 2 ) h<2 2 >j| (12)

For a QKD to be secure, Alice-Bob mutual information
must be greater than Alice-Eve or Bob-Eve information
[4]; the next step is then to evaluate Alice-Bob mutual
information. Also in this case we must set F = F/' =1,
because Bob receives a perturbed state according to Eve’s
choice of minimizing P,. By using this condition and the
lemma stated above, and by averaging information on the
input states, we get

T =1—(1/2)h[(1 + cosix)/2] (13)

All the mutual information of J 5, J 45, and I g is plotted
as functions of the detection probability d in Fig. 2. It can
be noted that the mutual information of I, and of Iz is
different. This represents a resource for Alice and Bob
since the condition I,z = I is fullfilled for every value

=

0 0.05 0.1 015 0.2 025 0.3 0.35

FIG. 2. Mutual information vs detection probability in individ-
ual attacks. The descent curve represents Alice and Bob mutual
information J,5. The crescent curves are Alice-Eve mutual
information I, (dotted line) and Bob-Eve mutual information
I (dashed line).
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of d; i.e., a secret key can always be established, regardless
of the noise on the channel. This situation resembles what
happens with “‘reverse reconciliation’’ in continuous vari-
ables’ quantum cryptography when lossy channels are
taken into account [13]. On the other hand, J 5 = I,z
when d < 23%. Yet, the analysis of I, can still be useful
for Eve’s upper-bound information when a more general
individual attack is considered, i.e., the one in which Eve
creates coherence between points E; and E, (Fig. 1) to
improve her attack. In this case, it turns out that the
communication is secure until d =< 18% (under similar
circumstances BB84 leads to d < 15% [4]). We also note
that the maximum of I,y corresponds to a detection
probability d = 3/8 = 37.5%, which is the least distur-
bance Eve can introduce on the channel when she steals a
full amount of information from Alice. This value can be
used to calculate the asymptotical security [5] of the pro-
tocol when it is used to perform a run-by-run DC. Given
the probability ¢ that a control mode occurs, and an aver-
age probability d to detect Eve during a control run, the
probability that Eve steals n bits of full information with-
out being detected is P, (c,d)=(1—¢c)"/[1—c(1 —d)]".
To picture a reasonable scenario, besides d = 3/8 we set
¢ = 1/2. In this case, Eve has a probability of about 7.8%
to successfully eavesdrop 1 byte (i.e., 8 bits) of information
and of about 0.6% to eavesdrop 2 bytes. Increasing the
value of ¢ increases the security of the protocol, but at the
expense of the transmission rate.

For the sake of completeness we briefly describe the
behavior of the presented scheme on a lossy channel. In
this case two aspects are important: security against losses-
based attacks and efficiency of transmission. As far as the
former is concerned, the risk is that an almighty Eve could
substitute an imperfect channel with a perfect one and
conceal her presence behind losses interpreted as natural
by Alice and Bob. This possibility exploits the lack of
symmetry in either the control or the encoding stage [9]
and is not effective in our case. We have also considered
subtle attacks based on a sort of ‘““quantum nondemolition
eavesdropping,” but Alice and Bob can always detect Eve
either by comparing losses measured during control runs
with those of message runs or by using a message authen-
tication procedure as well. Also, asking Alice to add a
random phase to the encoded qubit could be useful, though
not essential, in this case.

Regarding the efficiency, we consider the definition
given in [14], £ = b,/(q, + b,), where b, is the expected
number of secret bits received by Bob, ¢, is the number of
transmitted qubits on the quantum channel, and b, is the
number of transmitted bits on the classical channel. Since
in our scheme no classical information is needed in the
message mode, we have b, = 0 that together with b, = 1,
q: = 1 provides £ = 1. However, the practical efficiency
takes into account the channel’s transmittance also [15]. In
our protocol a qubit travels for a distance 2L, L being the
separation between Alice and Bob. If T is the transmit-

tance of the qubit over a distance L, the transmittance
pertaining to a distance 2L is 7 2. Then, the practical
efficiency can be evaluated as & = £T % = T 2. For com-
parison, in BB84 itis & = (1/6)T because b, = 0.5, g, =
1, b, = 2, and a qubit travels for a distance L. This entails
that the presented scheme is more efficient than BB84
provided the transmittance of the channel is T > 1/6. It
is also possible to see [15] that the practical efficiency
pertaining to entanglement-based schemes contains a fac-
tor 7 *, making it lower than ours.

A final remark concerns the feasibility of our scheme.
The absence of entanglement makes it almost as practical
as BB84. More so, if we require a control on the backward
path, i.e., only one passive (for an “in-principle’’ demon-
stration) or active (for a complete implementation) linear
optical element, like a %—Wave plate or an electro-optic
modulator, both introducing a small amount of losses.
Suitable schemes working with faint laser pulses can be
found in [16].

In conclusion, we have presented a two-way protocol for
deterministic communication without entanglement.
Besides its unconditional security, it has explicitly been
proved secure against individual attacks regardless of the
noise on the channel. The proposed scheme also is efficient
on lossy channels and is suitable for experimental
realization.
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