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Structure of a Quantized Vortex near the BCS-BEC Crossover in an Atomic Fermi Gas
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In order to clarify the structure of a singly quantized vortex in a superfluid fermion gas near the
Feshbach resonance, we numerically solve the generalized Bogoliubov–de Gennes equation in the boson-
fermion model. The superfluid gap, which contains contributions from both condensed fermion pairs and
condensed bosons, is self-consistently determined, and the quasiparticle excitation levels bound in the
vortex core are explicitly shown. We find that the boson condensate contributes to enhance the matter
density depletion and the discreteness of localized quasiparticle spectrum inside the core. It is predicted
that the matter density depletion and the discrete core levels are detectable in the vicinity of the
BCS–Bose-Einstein condensation crossover point.
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The realization of superfluidity in the ultracold atomic
Fermi gases [1,2] is a landmark achievement in the history
of physics. The superfluid is achieved by utilizing a cross-
over to BCS superfluidity from Bose-Einstein condensa-
tion (BEC) of tightly bound molecules [3–6]. In these
systems, the interaction causing BCS superfluidity or mak-
ing a molecule from two fermion atoms originates from the
Feshbach resonance [7] which is controllable by tuning an
external magnetic field.

The clear-cut confirmation of the BCS-like pairing state
in the superfluid Fermi gas has not yet been achieved. The
observation of a quantized vortex will provide the most
direct confirmation [8,9]. In this Letter, we theoretically
investigate the single-vortex state of a superfluid Fermi gas
near the Feshbach resonance on the basis of the generalized
Bogoliubov–de Gennes (BdG) equation in the boson-
fermion model [4–6].

Vortices in conventional BCS superconductors have so
far been extensively studied [10–12]. The matter density of
a vortex core is known to be little depleted in conventional
weak-coupling BCS superconductors [13–16]. This is be-
cause the superfluid density is much less than the normal-
fluid density; i.e., EF � � (where EF and � denote Fermi
energy and superconducting gap, respectively). However,
in strong-coupling superconductors the situation is differ-
ent, because �� EF. As a result, the depletion of the
superfluid density is expected to be large and detectable
[9,13–15]. In fact, very recently vortices in a neutron star
[17] and an atomic Fermi gas [9] have been discussed on
the basis of this idea.

In the atomic Fermi gasses, the pairing character in the
superfluid state changes from BCS-like to BEC-like when
the threshold energy of the Feshbach resonance approaches
the chemical potential [4–6]. Near this crossover region,
the system goes into the strong-coupling limit. Then, since
the superfluid is a mixture of BCS pairs and BEC mole-
cules, the vortex structure is expected to be more complex
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than that in the single-component case [9]. Then one can
raise the question of how the condensed bosons affect the
vortex structure, that is, whether the depletion of the matter
density inside the core is enhanced by the condensed
bosons. To answer this, in this Letter we study the structure
of a vortex in the boson-fermion model [4–6]. We numeri-
cally solve the generalized BdG equation in a fully self-
consistent fashion [11] and obtain both fermionic and
bosonic gap functions. Using the solutions, we clarify the
density profile of both components in the single-vortex
state as a function of the threshold energy from BCS to
the crossover regime.

The fermionic quasiparticle excitations localized in a
vortex core are well understood in the BCS weak-coupling
case [10]. The lowest excitation energy and the spacing
between the core levels are an order of �2=EF�� EF� [10],
which indicates that the quasiparticle spectrum is nearly
gapless and continuous. Then the vortex core is regarded as
the ‘‘normal core’’ [18]. However, such a picture does not
make sense in the strong-coupling limit, since the separa-
tions between core levels become significant [13]. In this
Letter, we calculate the energy spectrum of the fermionic
quasiparticles in the single-vortex state and show that the
separations between the core levels exceed 0:1EF near the
crossover point, which can be classified as an ultra clean
vortex [19]. Such widely separated quasiparticle levels will
be detectable by rf-tunneling spectroscopy [20]. The de-
tection of the core levels also provides proof for the ex-
istence of quantized vortices.

In neutral fermionic superfluids the collective phase
oscillation mode (the Goldstone mode) is known to appear
below the fermion-pair excitation energy in the uniform
state, i.e., twice the Meissner gap energy [21]. Since the
vortex core levels are also situated below the Meissner gap,
the core levels and the collective mode can couple with
each other, which causes the damping of the core levels and
the collective phase oscillation mode. This interaction is
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characteristic of the neutral fermionic superfluids. In this Letter, we briefly discuss this effect and show that the vortex
solution in the present mean-field approximation is valid in the crossover regime.

The Hamiltonian of the boson-fermion model is given as [4–6]
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where  	�r� and ’B�r� are the field operators of the
fermionic atoms with pseudospin 	 �"; # and the quasimo-
lecular bosons, respectively, U is the BCS attractive inter-
action �U > 0�, � is the chemical potential, and 2� is the
threshold energy of the Feshbach resonance. The last term
with the coupling constant g in Eq. (1) represents the
process that a boson is created from two fermion atoms
and vice versa due to the Feshbach resonance [4–6]. Note
that the fermionic atoms are almost bound to two-atom
molecules at � � �, whereas molecules and fermionic
atoms can coexist when � >� [4–6]. In the mean-field
approximation, the gap functions are given by the vacuum
expectation values as

�B�r� � gh’B�r�i; (2)

�F�r� � Uh "�r� #�r�i; (3)

and the generalized BdG equation is derived from Eq. (1)
as
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These equations are solved self-consistently together with
the BCS gap equation [22],

�F�r� � U
X
n

un�r�v�n�r�: (6)

Let us study an isolated vortex in the 2D s-wave case
[11] without a trapping potential. We note that the core
states confined within the coherence length which is nor-
mally much less than the condensate diameter are not
qualitatively affected by the trapping potential. By express-
ing the gap functions as �F�r� � �F�r�e�i� and �B�r� �
�B�r�e�i� in the 2D cylindrical coordinates r � �r; ��, the
eigenfunctions un�r� and vn�r� can be expanded as
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14040
pending on the value � [11]. Thus, the BdG equation can
be solved as an eigenvalue problem for 2M��� � 2M���
matrices [11]. The gap functions are expanded as �B�r� �P
ifi�i1�r� and �F�r� �

P
igi�i1�r�, and the expansion

coefficients, fi and gi, are determined self-consistently
from Eqs. (5) and (6) [15]. Furthermore, we have a
constraint for the total number of particles, N �
NF � 2NB � const, where NF � 2

R
dr
P
ijvi�r�j2 and

NB �
R
dr j�B�r�j2

g2
. The particle number N is kept constant

during the iterative calculations in � >�. For a given
value of �, we determine � from the constraint.
Throughout this Letter, the energy and the radial distance
are normalized by unit of EF and 1=kF, respectively. The
coupling constants are fixed toU � 0:5 and g � 0:6, and R
is taken as R � 40 1

kF
. We note that results of other cases

are qualitatively the same as in the present one.
Let us now present self-consistent solutions for the

single-vortex state. Figure 1(a) shows a solution for the
gap functions �F�r� and �B�r� in � � 3:0. The obtained
chemical potential��� 0:9915� is slightly shifted from the
value of the weak-coupling limit � � EF � 1 in this self-
consistent solution. The Bose condensate is not well de-
veloped, and then the BCS pairs mainly contribute to the
superfluidity. Note that �F � 0:1EF outside the core,
which indicates that the system belongs to the
intermediate-coupling range. Therefore, the quantum os-
cillation, such as the Friedel oscillation, is also visible in
the core region as in Refs. [13–16]. The gap functions
depend strongly on the threshold energy when � is close
to�, i.e., the resonant point. In Fig. 1(b), we plot the result
at � � 1:1, where the chemical potential � is reduced to a
value of 0.621 [6]. As seen in this figure, �B grows and
exceeds �F. In this case, the spectrum of the localized
quasiparticles strongly depends not only on �F�r� but also
on �B�r�, since the off-diagonal component in Eq. (4) is
given by their sum, �F�r� ��B�r�, in the boson-fermion
model [4–6]. It is found that the Friedel-oscillation-like
behavior in the spatial dependence becomes obscure; that
is, the spatial dependence of the gap functions becomes
monotonic. Hence, one understands that the Bose conden-
sate works to diminish the quantum character of the qua-
sifermions. In Fig. 1(c), we plot the asymptotic values of
the gap functions for r! 1, �F

1, and �B
1 against �. When

� approaches the resonant point (� � 1), �B
1 exceeds �F

1

at a certain value of �, and both �F
1 and �B

1 are enhanced.
These results reflect that the crossover takes place at the
resonant point [6].
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FIG. 2 (color online). (a) The � dependence of the depletion
rate (%). (b) The radial distribution of ntot at � � 3:0 and at � �
1:1. The radial distributions for the components nF and 2nB are
shown in (c) for � � 3:0 and in (d) for � � 1:1.
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Let us next study the density profile near the vortex core.
As was pointed out in Ref. [9], the observation of a vortex
core is easier in a strong-coupling BCS superfluid since the
depletion of matter density is relatively obvious. In this
Letter, the depletion of the matter density in the vortex
core is clarified as a function of �. In order to quantify
the depletion inside the core, we introduce the depletion
rate defined as 
n1tot � ntot�r � 0��=n1tot, where ntot�r� �
2nB�r� � nF�r�. The bosonic and fermionic densities,
nB�r� and nF�r�, are calculated by the eigenfunctions of
the generalized BdG equation as nB�r� � j�B�r�j2=g2 and
nF�r� � 2

P
ijvi�r�j2. Figure 2(a) shows the � dependence

of the depletion rate in percentage terms (%). As seen in
this figure, the depletion rate exceeds 70% when the
threshold energy approaches the resonant point. The total
matter density profile around the vortex in two cases are
shown in Fig. 2(b). In � � 3:0, which is far from the
resonant point, not very significant depletion is seen in
the core region [16], while the depletion is clearly seen
in � � 1:1. The total matter density can be split into two
parts, i.e., the bosonic nB�r� and fermionic nF�r� ones.
Figure 2(c) shows the result for � � 3:0. In this case, the
density of the condensed bosons is negligibly small, and
then the fermionic contribution is dominant for the core
14040
depletion. This result is consistent with that given in
Refs. [9,13,15,16]. The results for � � 1:1 are presented
in Fig. 2(d). The boson density is not small, which is
sharply contrasted to the � � 3 case, and the depletion
inside the core is found to be complete. We also notice that
the depletion in the fermionic density is enhanced in the
crossover region compared with that in � � 3:0. This is
because the BCS coupling constant is effectively enhanced
by the molecule formation and therefore the strong-
coupling character becomes stronger [9]. From these re-
sults, one understands that a vortex is well visible in the
density profile measurements in the vicinity of the resonant
point, but it becomes obscure as the system departs from
the resonant point [see Fig. 2(a)].

Now, let us focus on the excitation spectrum of the
quasifermions in the single-vortex state [10]. In Fig. 3(a),
the lowest two excitation energies, $E1 and $E2, are
plotted as a function of � (see also the right panel in which
the relation between the core levels and the excitations is
schematically shown). Note that $E1 increases to a large
value of about 0:15EF for �! 1. In Fig. 3(b), we plot the
energy eigenvalues as a function of � in the case of � �
3:0. The low-lying branch of the spectrum represents the
excitation levels bound in the vortex core. As seen in this
figure, nearly continuous spectrum appears inside the
Meissner gap. This quasiparticle spectrum is very similar
to that in the weak-coupling BCS superconductors [11].
Near the BCS-BEC crossover, the core levels are drasti-
cally altered, especially in the low-energy region, as seen
in Fig. 3(c). We notice, for example, that the lowest exci-
tation energy becomes quite large, i.e., $E1 � 0:15EF, and
also the distances between the other low-lying core levels
are largely expanded. Then the spectrum cannot be con-
sidered as being continuous; that is, the vortex is not a
normal core in this crossover regime.
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Finally, we briefly discuss the effect of collective ex-
citations (the Goldstone mode) on the vortex core states.
This effect arises from the self-energy correction to the
fermion core levels. Note that the self-energy correction
can be described in terms of the virtual processes that
induce the transitions between core levels by emitting or
absorbing the collective excitation modes, which causes
both the shift and the broadening of the core levels. In the
present system, the normal modes of the collective excita-
tions can be labeled in terms of the integer 2D angular
quantum numbers n � 0;�1;�2; . . . , reflecting the cylin-
drical symmetry, and the collective mode with the quantum
number n can cause transitions between the core states
satisfying the selection rule for angular momentum, ��
�0 � �n. We can show on the basis of a random-phase-
approximation–like calculation that the correction be-
comes large only if the energy of the collective mode
satisfying the selection rule is close to one of the core level
spacings. But the collective mode energy does not gener-
ally coincide with the level spacings, which indicates that
the correction to the mean-field core levels is not signifi-
cant, especially in the BEC-BCS crossover region, because
the core levels are well separated in the crossover region.
Thus, the present core levels are well justified.

In summary, we have studied microscopically the single-
vortex state in the boson-fermion model for the first time.
We clarified the variation of the vortex structure and the
core excitation spectrum as a function of the threshold
energy of the Feshbach resonance. Near the BCS-BEC
crossover region, the strong-coupling BCS superfluid state,
which includes the large number of condensed molecules,
is realized. Then the quasiparticle levels bound in the
vortex core are well separated, and the number of core
14040
levels is drastically reduced in this region. This strong-
coupling effect forming the condensed molecules may be
observed as the strong depletion of the matter density and
the widely discrete density of states. These features are in
marked contrast to those of the vortex core in conventional
BCS superfluids.
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