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Synchronization in Complex Networks with Age Ordering
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The propensity for synchronization is studied in a complex network of asymmetrically coupled units,
where the asymmetry in a given link is determined by the relative age of the involved nodes. In growing
scale-free networks, synchronization is enhanced when couplings from older to younger nodes are
dominant. We describe the requirements for such an effect in a more general context and compare
with the situations in nongrowing random networks with and without a degree ordering.
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From the brain over the Internet to human society, com-
plex networks are prominent candidates to describe sophis-
ticated collaborative dynamics in many areas [1]. Of
particular interest are the so called small-world (SW) and
scale-free (SF) wirings. SWs are intermediate wirings
between regular lattices (RLs) and random networks
(RNs) [2]. They are characterized by a path length ¢
scaling logarithmically with the network size N (£
logN, in contrast to the linear scaling of RLs), yet with a
clustering structure much higher than a RN. A specific
example of a SW is the SF configuration, in which the
degree k (the number of edges in a node) follows a power
law distribution p(k) ~ k~7. A SF network can be grown
by adding successively new nodes to the network and
connecting them with the already existing ones by the
preferential attachment rule [3].

Recently, the dynamics of complex networks has been
extensively investigated with regard to collective (synchro-
nized) behaviors [4], with special emphasis on the inter-
play between the complexity in the overall topology and
the local dynamical properties of the coupled units. It has
been observed that the SW property can increase the
propensity for synchronization (PFS) in networks of
Hodgkin-Huxley neurons or phase oscillators [5], while,
on the other hand, synchronization can become more diffi-
cult as the heterogeneity of a SF network increases [6]. The
theoretical framework for determining the PFS has been
established by Barahona and Pecora [7], who separated the
topological part of the problem from the part involving the
dynamics on the local nodes.

A basic assumption of previous works is that the local
units are symmetrically coupled with uniform undirected
coupling strengths (unweighted links). This simplification,
however, does not match satisfactorily the peculiarities of
many real networks. In ecological systems, for instance,
the nonuniform weight in prey-predator interactions plays
a crucial role in determining the food web dynamics [8].
Similarly, the interaction between individuals in social
networks [9] is never symmetric, rather it depends upon
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several social factors, such as age, social class or influence,
personal leadership, or charisma.

In this Letter, we analyze networks of asymmetrically
coupled dynamical units. By explicitly relating the asym-
metry in the connections to an age order among differ-
ent nodes, we will give evidence that age ordered net-
works provide a better PFS. In particular, we will show
that the three main ingredients maximizing PFS are
(i) heterogeneity in the network topology allowing for
the existence of nodes with very large degrees (hubs)
together with nodes with very small degrees (nonhubs),
(i1) asymmetry in the connections forcing a preferential
coupling direction from hubs to nonhubs, and (iii) a struc-
ture of connected hubs in the network.

We here adopt the idea that the direction of an edge can
be determined by an age ordering between the connected
nodes. For growing networks (such as SF) the age order is
naturally related to the appearance order of the node during
the growing process. We consider a network of N linearly
coupled identical systems. The equation of motion reads

N
x; =F(x;) — U'Z Gin[Xj]:
j=1

i=1...N, (1

where x = F(x) governs the local dynamics of the vector
field x; in each node, H[x] is a linear vectorial func-
tion, and o is the coupling strength. G;; is a zero row-

sum coupling matrix with off diagonal entries G;; =
_.J,Z\.ij@iij”, where A is the adjacency matrix, and
ZjeKiOij
0;, =52 (0®,; =12) for i > j (i <j). K; is the set of
k; neighbors of the ith node, and the parameter —1 < § <
1 governs the coupling asymmetry in the network.
Precisely, the limit § — —1 (@ — +1) gives a unidirec-
tional coupling where the old (young) nodes drive the
young (old) ones. Asymmetric coupling was also recently
established for nonidentical space extended fields [10].
Following the ideas of Ref. [7], the network PFS can
be inspected by linear stability of the synchronous state
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(x; = x,, Vi). By diagonalizing the variational equation,
one obtains N blocks of the form ¢; = JF(x,)(; +
o A;H[{;], which differ only by the eigenvalues of the
coupling matrix A; (here J is the Jacobian operator). The
behavior of the largest Lyapunov exponent associated with
v = o A; (also called master stability function [11]) fully
accounts for the linear stability of the synchronization
manifold. Namely, the synchronous state (associated with
Ay = 0) is stable if all the remaining blocks, associated
with A; (i = 2), have negative Lyapunov exponents.

For a generic 6, our coupling matrix is asymmetric, and
therefore its spectrum is contained in the complex plane
(A =0; 4, = AJ + jAl,1=2,..., N). Moreover, since all
elements of G are real, nonreal eigenvalues appear in pairs
of complex conjugates. In the following, we will order the
eigenvalues of G for increasing real parts. Gerschgorin’s
circle theorem [12] asserts that G’s spectrum is fully con-
tained within the union of circles (C;) having as centers the
diagonal elements of G (d;), and as radii the sums of the
absolute values of the other elements in the corresponding
rows ({A;} C U;Cild;, >4 | G D.

By construction, the diagonal elements of G are normal-
ized to 1 in all possible cases. It is crucial to emphasize the
physical and mathematical relevance of this choice.
Physically, this normalization prevents the coupling term
from being arbitrarily large (or arbitrarily small) for all
possible network topologies and sizes, thus making it a
meaningful realization of what happens in many real world
situations (such as neuronal networks) where the local
influence of the environment on the dynamics does not
scale with the number of connections. Mathematically,
since G is a zero row-sum matrix (and furthermore d; =
> ;+i | Gij | because all nonzero off diagonal elements are
negative), this warrants in all cases that G’s spectrum is
fully contained within the unit circle centered at 1 on the
real axis (| A; — 1 |= 1, V1), giving the following inequal-
ities: () 0< A, =...= Ay =2, and (i) | A} |= 1, VL
This latter property is essential to provide a consistent
and unique mathematical framework within which one
can formally assess the relative merit of one topology
against another for optimal PFS.

Let R be the bounded region in the complex plane
where the master stability function provides a negative
Lyapunov exponent. The stability condition for the syn-
chronous state is that the set{o'A;, [ = ., N} be entirely
contained in R for a glven o. The best PFS is then assured

when both the ratlo X and M = maxf{| A} |} are simulta-

neously made as small as possible.

We start with analyzing the effects of heterogeneity in
the node degree distribution, by comparing the PFS of a
class of SF networks with different degree distributions
with that of a highly homogeneous RN. The used class of
SF networks is obtained by a generalization of the prefer-
ential attachment growing procedure [3]. Namely, starting
from m + 1 all to all connected nodes, at each step a new

node is added with m links connecting to old nodes with
probability p; = Z (k — B) (k; being the degree of the ith

node, and B a tunable real parameter, representing the
initial attractiveness of each node). The y exponent of
the power law scaling in the degree distribution p(k) ~
k=7®m is then given by y(B, m) = 3 + £ in the thermo-
dynamic (N — o) limit [13]. While the average degree is
by construction (k) = 2m (thus independent of B), the
heterogeneity of the degree distribution is strongly modi-
fied by B. This induces convergence of higher order mo-
ments of p(k), at variance with the case B = 0 recovering
the model of Ref. [3].

For comparison, a highly homogeneous Erdds-Rényi
RN [14] is considered, with connection probability P =
2 (giving same average degree (k) = 2m), with an arbi-
trary initial age ordering. Figure 1(a) shows A}, and A} vs 6
for a SF network with m = 5 and B = 0 (solid line) and for
the chosen RN (dashed line). All calculations refer to
ensemble averages over 24 different realizations of net-
works with 500 nodes. For RNs, the curve A} (60) [A5(6)]
displays a minimum [maximum] for 8 = 0, showing that
asymmetry here deteriorates the network PFS. At variance,
for a SF network the difference between A} and A con-
tinuously shrinks, as 6 decreases. As a consequence

Fig. 1(b) reports the behavior of the elgenratlo X making

it clear that while the best PES in RN is obtained for § = 0,
SF shows better (worse) PFS for § — —1 (6 — 1). As for
the imaginary part of the spectra, Fig. 1(c) reports M vs 6,
indicating only very small differences between SF and RN
in the whole range of the asymmetry parameter, and high-
lighting that the contribution to the PFS of the imaginary
part of the spectra does not depend significantly on the
specific network structure. These findings have been con-
sistently observed in subsequent results.

The second step of our study is the investigation of the
PFES in SF at different m and B values. In Fig. 2(a), PFS is
compared for different m for B = 0. Since m determines

FIG. 1.

Ay and Aj (a)
(m=5and B =0, sohd hnes) and RNs (dashed lines). All quan-
tities and all other network parameters are specified in the text.

s )u (b) and M (c) vs 0 for a SF network
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the average degree, as m increases, the average connectiv-
ity increases and synchronizability is naturally enhanced.
The most important point is that the monotonically de-

creasing behavior of 5% with 6 persists for all m, indicating
2

that synchronization is always enhanced when 6 becomes
smaller. In Fig. 2(b), PFS is compared for m = 5 and for
various values of B, altering the exponent of the degree
distribution. For all B values, almost the same enhance-
ment for negative 6 is observed. In Ref. [6] it was found
that, for symmetric coupling, the PFS does decrease as the
network becomes more heterogeneous, due to an overload
of the traffic of communication passing through the highly
connected nodes. However, since in our model the input of
each node is normalized to 1, this overload effect does not
take place, and there is even a slightly enhanced PFS with
decreasing B, as can be seen from the inset of Fig. 2(b).
Therefore one can conclude that in aged growing networks
PFS depends on the average degree, but the asymmetry
enhanced synchronization phenomenon does not signifi-
cantly depend on heterogeneity.

This leads us to discuss the main point of our study,
concerning the determination of the essential topological
ingredients enhancing PFS in weighted (aged) networks.
The first ingredient is that the weighting must induce a
dominant interaction from hub to nonhub nodes. This can
be easily understood by a simple example: the case of a star
network consisting of a single large hub (the center of the
star) and several nonhub nodes connected to the hub. When
the coupling is dominant from nonhub to hub nodes,
synchronization can be prevented by the fact that the hub
receives a set of independent inputs from the different
nonhub nodes. In the reverse case (when the center drives
the periphery of the star) synchronization can be easily

10

PR S R I L L
T 1-1-0.580.51-1 0 1

FIG. 2. ’/\\—N vs @ for (a) SF with B = 0 and m = 2 (circles), 5
(squares), and 10 (diamonds); (b) SF with m =5 and B =0
(circles), 5 (squares), and 10 (diamonds); (c) RNs with arbitrary
age order (circles), RNs with age depending on degree (squares),
SF with m = 5 and B = 0 without connection between nodes 1
and 5 (diamonds), and SF with m = 5 and B = 0 (triangles). The

inset of (b) is a zoom of the region close to 8 = 0.

achieved. The very same mechanism occurs in our SF case.
Indeed, for positive (negative) 6 values, the dominant
coupling direction is from younger (older) to older
(younger) nodes. Now, in SF the minimal degree of a
node is by construction m and older nodes are more likely
to display larger degrees than younger ones, so that a
negative € here induces a dominant coupling direction
from hubs to nonhub nodes.

The second ingredient is that the network contains a
structure of connected hubs influencing the other nodes.
In our SF case, the normalization in the off diagonal
elements of G [15] assures that hubs receive an input
from a connected node scaling with the inverse of their
degree.

In order to make evident the validity of these claims, we
have considered the PFS of a series of ad hoc modified
networks. The results are summarized in Fig. 2(c). First,
we have reordered the node age in RNs according to each

node degree. The resulting ';—;,’(6) (curve with squares)

shows now a minimum for = —0.5, in contrast to the
case with arbitrary aging (curve with circles). This con-
firms the need of a dominant interaction from hubs to
nonhubs for improving PFS, also for highly homogeneous
networks. As for the second ingredient, starting from a SF
with m =5 and B = 0 (curve with triangles), we artifi-
cially disconnected the initially existing link between the
first and fifth network nodes. These are indeed the two hubs
with the highest degree in the SF configuration. The result
is shown in the curve with diamonds, where one sees that
such a small perturbation (the difference in the two net-
works is limited to only a link) is already sufficient to
substantially weaken the PFS. The situation remains
better, however, than the two RN cases, indicating that
the structure of growing aged network inherently enhances
synchronization.

Finally, we illustrate our arguments by an example of a
network of coupled chaotic Rossler oscillators [16]. The
dynamics is ruled by Eq. (1), with x = (x, y, z), F(x) =
[y — 2z, x+0.165y,0.2 + z(x — 10)], and H[x]= x.
The master stability function is depicted in Fig. 3(d) in
the complex plane » = a + jB. The bold solid line (de-
noting a zero Lyapunov exponent) is the boundary between
stability (R) and instability regions for the synchroniza-
tion manifold. Figures 3(a)—3(c) report the location of the
G spectrum for a SF network form =2, B =0, and N =
500 and with § = —0.8, 0, and 0.8, respectively. While for
6 = 0 the spectrum is real, comparison of panels (a) and
(c) shows that the spectra at negative 6 values are much less
dispersed in the complex plane, thus increasing the range
of o values for which synchronization can be achieved in
the network.

The appearance of the synchronous state can be moni-
tored by looking at the vanishing of the time average
(over a window T) synchronization error (D)=

mzpl [T lx; — xylldf’. In the present case, we

138701-3



PRL 94, 138701 (2005)

PHYSICAL REVIEW LETTERS

week ending
8 APRIL 2005

T T T T T T T

2@ b | (o)

R O0F
0.2F - + 1
o T 0 T 0 1 2
7\41‘
8 5
(d
4
0
.0
-5
-4
-8 -10
0 4 8

o

FIG. 3. Distribution of G’s eigenvalues in the complex plane
for a SF network with m =2, B=0, and 0 = —0.8 (a),
6 =0 (b), and 8 = 0.8 (c). (d) Master stability function in the
complex plane for coupled Rossler oscillators.

adopt as vector norm [|x|| = |x| + |y| + |z|. Figure 4 re-
ports (D) vs 6 for RNs with arbitrary age (a) and for a SF
network with m =2 and B =0 (b). The curves with
circles, squares, diamonds, up-pointing triangles, and
left-pointing triangles refer to # = —0.8, —0.4, 0, 0.4,
and 0.8, respectively. While in the RN case the range for
synchronization is substantially independent on 6 [reflect-

10
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FIG. 4. (D) (see text for definition) vs o for RNs (a) and for a
SF network [m = 2 and B = 0 (b)]. In both graphs the curves
with circles, squares, diamonds, up-pointing triangles, and left-
pointing triangles refer to § = —0.8, —0.4, 0, 0.4, and 0.8,
respectively.

ing the behavior of ))‘L—N in the dashed line of Fig. 1(b)], the
case with SF [to be cozmpared with the curve with circles in
Fig. 2(a)] confirms that synchronization is strongly af-
fected by the asymmetry. In particular, negative (positive)
values of 8 have the effect of increasing (decreasing) the
range of coupling strengths over which synchronization
occurs with respect to the case 8 = 0.

In conclusion, we have demonstrated that the PFS is
enhanced in networks of asymmetrically coupled units. In
growing SF such enhancement is particularly evident when
the dominant coupling direction is from older to younger
nodes. A key aspect of social organizations is the dynamics
of information exchange. Our approach may provide new
insights in the study of collective communication or coor-
dination in distributed social networks, as well as useful
hints for understanding the formation of social collective
behaviors (leading opinions, rumors, political orientations,
dominant tastes, habits, fashion, etc.).
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