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Phase Diagram of Dipolar Hard and Soft Spheres: Manipulation of Colloidal Crystal Structures
by an External Field
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Phase diagrams of hard and soft spheres with a fixed dipole moment are determined by calculating the
Helmholtz free energy using simulations. The pair potential is given by a dipole-dipole interaction plus a
hard-core and a repulsive Yukawa potential for soft spheres. Our system models colloids in an external
electric or magnetic field, with hard spheres corresponding to uncharged and soft spheres to charged
colloids. The phase diagram of dipolar hard spheres shows fluid, face-centered-cubic (fcc), hexagonal-
close-packed (hcp), and body-centered-tetragonal (bct) phases. The phase diagram of dipolar soft spheres
exhibits, in addition to the above mentioned phases, a body-centered-orthorhombic (bco) phase, and it
agrees well with the experimental phase diagram [Nature (London) 421, 513 (2003)]. Our results show
that bulk hcp, bct, and bco crystals can be realized experimentally by applying an external field.
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FIG. 1. (a) Body-centered structure in three dimensions,
whose conventional unit cell is a� b� c. The field is along
the z axis. The white arrows show the direction of the field-
induced dipole moments. The bct structure corresponds to a �
b � c, and the bco to a � b; c � a, and c � b. (b) Top view of
the body-centered structure, that can be constructed by placing
strings of particles shifted by c=2 into two interpenetrating
rectangular lattices. (c),(d) The hcp and fcc structures shown
in side and top views. The hcp structure has AB stacking of the
hexagonal planes, and the fcc ABC.
Dispersions of colloidal particles with a dielectric con-
stant mismatch with the surrounding solvent, that are sub-
ject to an external electric field, acquire a dipole moment
parallel to the field. Similarly, para- or diamagnetic col-
loids in a solvent, subject to an external magnetic field
acquire a dipole moment parallel to the field [1]. These
suspensions are called electro- (ER) and magnetorheolog-
ical (MR) fluids, because their rheological properties can
be controlled by the external field [2,3]. If the electric field
exceeds a critical value, the fluid turns into a solid whose
yield stress increases upon increasing the field. ER and MR
fluids have potential use in industrial applications as hy-
draulic valves, clutches, brakes, etc., Moreover, the possi-
bility to tune the crystal structure of these suspensions by
the applied electric field makes these suspensions appeal-
ing for photonic applications [4–6].

The phase behavior of these systems is determined to
first order by a dipole-dipole interaction. As the dipole-
dipole interaction favors orientations where the dipoles are
head to toe, particles tend to form strings in the direction of
the field. The equilibrium structure of ER fluids has been
the subject of many experimental [4,5,7–9], theoretical
[10–14], and simulation studies [15–17], and by now, it
has been widely accepted, that the high-field ground state
is a body-centered-tetragonal (bct) crystal [see Figs. 1(a)
and 1(b)]. The bct crystal is also the high-field ground state
of MR fluids [3,18].

Despite the great number of theoretical and simulation
studies on dipolar hard-spheres [10–17], the full phase
behavior, including effects due to the entropy, has so far
not been presented. In fact, many of the previous studies
focused on the high-field limit, where the energy term of
the free energy dominates the phase behavior and the
entropy part plays no role. In this Letter, we present, for
the first time, a full phase diagram, that spans from zero
field, where the system is entropy dominated, up to the
high-field limit, where the system is energy dominated. In
the limit of zero field, the well-known hard-sphere phase
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behavior is recovered, while in the limit of high field, the
system shows stable bct and broad fluid-bct coexistence.
More surprisingly, we find that, between the two extremes,
the high-density stable state is a hexagonal-close-packed
(hcp) phase [see Fig. 1(c)], which is known to be unstable
in bulk [19].

In the case of dipolar soft spheres, a phase diagram
analogous to the dipolar hard-sphere case is obtained,
that shows, in addition, a body-centered-orthorhombic
(bco) phase [see Figs. 1(a) and 1(b)]. The dipolar soft-
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FIG. 2. Phase diagram of dipolar hard spheres in the dipole
moment strength �-packing fraction  representation. The
circles denote points where the phase boundary was determined
and the gray areas denote coexistence regions (where the tie lines
are vertical). Snapshots are taken (a) in the string fluid phase
(� � 8:0,  � 0:01), and (b),(c) in the fluid-bct coexistence
region at (� � 13:1,  � 0:4) and at (� � 26:1,  � 0:3),
respectively.

PRL 94, 138303 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
8 APRIL 2005
sphere system can be used to model charged colloids in a
high-frequency electric field; a model system studied re-
cently by Yethiraj and van Blaaderen [4,5,9]. We find good
agreement with the experimental phase diagram in Ref. [4]
and explain the stability of the bco phase [see Figs. 1(a) and
1(b)] based on simple energy arguments.

In our model, we assume an electric or magnetic field
parallel to the z axis, that gives rise to a dipole-dipole pair
interaction given by


udip�rij� �
�
2

�
�
rij

�
3
�1� 3cos2�ij�; (1)

where � is the diameter of the particles, 
 � 1=kBT, rij is
the vector separating particles i and j, and �ij is the angle
that rij forms with the z axis. In the case of electric dipoles,
the dimensionless prefactor � in Eq. (1) is given by � �
p2=2��s�

3kBT in mksa (units of measure), where � �
��� �s�=��� 2�s�, �, and �s are the dielectric constants of
the particles and the solvent, respectively, and p �
�
2 ��s�

3Eloc is the dipole moment induced by the local
electric field Eloc � E�Edip. Here E is the external field
and Edip is the field induced by the other dipoles
[10,16,17]. In the case of magnetic dipoles, we have � �
m2=2��3kBT, where m � �

2 �
3Hloc����s�=��� 2�s�

is the induced magnetic moment, � and �s are the mag-
netic permeabilities of the particles and the solvent, and
Hloc � H�Hdip is the local magnetic field [3].

In the case of dipolar soft spheres, we use a repulsive
hard-core Yukawa potential given by


uY�r� �
� � exp����r����

r=� ; r 	 �
1; r < �

(2)

where � � Z2=�1� ��=2�2��B=�� is a constant prefactor
depending on the colloidal charge number Z, Debye
screening length ��1 ,and Bjerrum length �B �
e2=�skBT. Equation (2) is the pair potential given by the
Derjaguin-Landau-Verwey-Overbeek theory for charged
colloids [20]. Since we are interested in systems where
the van der Waals attraction is very small due to refractive
index matching, we have neglected it in Eq. (2). Phase
diagram of Yukawa particles has stable fluid, body-cen-
tered-cubic (bcc), and face-centered-cubic (fcc) phases
[21].

We perform Monte Carlo (MC) simulations in the ca-
nonical ensemble (NVT), where we fix the number of
particles N, the volume V, and the temperature T [22].
The simulation box is periodic in all three directions.
Typical number of particles in our simulations is N �
144–300, and cubic (or nearly cubic) simulation boxes
are used. Finite size effects were checked to be insignifi-
cant by doubling the number of particles for a couple of
state points. The Ewald summation method is used to
calculate udip�rij� [22], and the Gaussian width is opti-
mized according to the analytic estimates given in
Ref. [23]. Both the Yukawa and the real-space part of the
13830
dipolar potential are truncated at half of the shortest box
side length. The phase behavior is determined by
Helmholtz free energy calculations using thermodynamic
integration: we use the so-called � integration for the fluid
phase and the Frenkel-Ladd method for the solid phase
[22]. Phase coexistence regions are determined using the
common tangent construction.

Figure 2 shows the phase diagram of the dipolar hard
spheres in the dipole moment strength �-packing fraction
 � ��=6��3N=V representation. At � � 0, the well-
known hard-sphere fluid-fcc coexistence is recovered,
which at � * 1 turns into fluid-hcp coexistence. Figure 2
shows that the hcp phase dominates the high-density part
of the phase diagram for � * 2. The hcp and fcc phases are
not entirely symmetric, but are slightly compressed in the z
direction (less than 10%), because of the dipole-dipole
interactions. At � � 8:0, the system phase separates into
a (string) fluid phase and bct phase. The inset (a) in Fig. 2
shows a snapshot of the string fluid phase, where the
particles are aligned in strings parallel the z axis. The
fluid-bct phase coexistence region broadens with increas-
ing dipole moment strength and at � � 13:1, the coexisting
fluid phase is a very dilute gas phase (or a void, i.e.  � 0).
The inset (b) in Fig. 2 shows a snapshot taken inside the
gas-bct coexistence region.

At � � 38, the bct phase has a packing fraction close to
the maximum body-centered packing  max

bc � 0:698.
Snapshot (c) in Fig. 2 illustrates the gas-bct phase separa-
tion at dipole moment strength � � 26:1. We expect at
� > 38, coexistence between a void and a bct phase at
 max
bc , and a stable hcp phase for  >  max

bc .
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In the case of dipolar soft spheres, we use parameters
�� � 10:0 and � � 12:54, that for a solvent with Bjerrum
length �B=� � 0:005 corresponds to a bare charge of Z �
300. The phase diagram of the dipolar soft spheres is
shown in Fig. 3. At � � 0, Fig. 3 shows a fluid-fcc coex-
istence with coexisting packing fractions  fluid � 0:31 and
 fcc � 0:32. For � * 17, the hcp phase dominates the
high-density part of the phase diagram. As can be seen
from Fig. 3, increasing the dipole moment strength reduces
the stability region of the hcp phase and, at � * 100, the
hcp phase is only stable at  >  max

bc . In the range 4< �<
67, we find a new colloidal crystal structure, i.e., the
asymmetric bco phase, which is a result of the combination
of the soft repulsive interactions and the induced dipolar
interactions. At � * 50, a stable bct phase is found at high
 , while fluid-bct coexistence is found at low . We expect
that the fluid-bct coexistence broadens further when � >
180, until the bct phase reaches the maximum packing
 max
bc .
In Fig. 3, the upper horizontal axis gives the (root mean

square) electric field strength. The � to Erms conversion is
done using [24]

Erms � 2
j1� ��

6 j

j�j

��������������
kBT�

�s�3�

s
; (3)

where we used parameter values that correspond to the
experimental system of Ref. [4]:� � �0:105, T � 300 K,
�s � 5:6, and � � 2 �m. This allows us to compare di-
rectly the two phase diagrams, and we find a remarkably
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FIG. 3. Phase diagram of dipolar soft spheres with parameters
�� � 10:0 and � � 12:54 in the (dimensionless dipole moment
strength �, packing fraction  ) representation. The circles de-
note points where the phase boundary was determined and the
gray area denotes the coexistence region (where the tie lines are
vertical).
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good structural agreement. Both phase diagrams show, at
low field strength, the same sequence of fluid, bct [25] and
bco phases upon increasing  , and at high fields, coex-
istence between a gas (void) and a bct phase [26].

The bct and bco phases are explained as follows.
Because of dipolar interactions, the particles form strings
in the z direction. If two strings are close to each other, it is
favorable to shift one string by c=2 in the z direction with
respect to the other string, as the dipole-dipole interaction
favors configurations with small angles � in Eq. (1).
Consequently, two kind of strings, say A and B, are ob-
tained. In Fig. 1(b), A strings are black and B strings are
gray. The interactions between the strings are such that
similar strings (A-A and B-B) repel each other more than
dissimilar strings (A-B). This is why the bct is stable: it
minimizes the A-B distance. Soft Yukawa repulsion of A-A
strings and A-B strings are very similar (A-B being slightly
weaker), and it favors configurations where all neighboring
strings have almost equal distances. This is achieved by
increasing the ratio a=b: In a hexagonal state (which is the
ground state if all strings are similar) all nearest neighbors
distances are equal and a=b �

���
3

p
� 1:73 (see the illus-

trations in Fig. 4). Hence, the bco phase.
Figure 4 shows the change in Madelung energy (energy

per particle of an ideal lattice) �UM�a=b� � UM�a=b� �
UM�1� of a bco crystal (with c � �) at packing fractions
 � 0:27, 0.4, and 0:5. At  � 0:27, the minimum of the
Madelung energy is at a=b � 1 and, therefore, the ground
state is bct. At  � 0:4 and 0.5, the minimum is at a=b �
1:4, meaning, that the ground state is bco. Splitting
�UM�a=b� into a Yukawa and a dipolar part as
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FIG. 4. Change in the Madelung energy �UM�a=b� �
UM�a=b� �UM�1� of a bco crystal when a=b is increased
from one. The results are for dipolar soft spheres with �� �
10:0, � � 12:54, and � � 37:5, at packing fractions  � 0:27,
0.4, and 0.5. The insets (a) and (b) show the soft and dipolar parts
of the Madelung energy change, respectively.
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�UM�a=b� � �UY
M�a=b� �Udip

M �a=b� [see Fig. 4(a) and
4(b)], we observe that �Udip

M �a=b� increases monotonically
with a=b, while �UY

M�a=b� has a minimum at a=b > 1:5.
Thus, the bco phase is stabilized by the soft repulsion.

The reason that the hcp phase is more stable than the fcc
phase is due to the difference between the Madelung en-
ergies of the two structures: The hcp structure with the
orientation shown in Fig. 1(c) has a Madelung energy
UM�hcp� � �0:37 066� 4� (as in Refs. [8,17]), while
the fcc structure (whose energy is independent of the
orientation) has a Madelung energy UM�fcc� �
�0:37 024� 4� (as in Refs. [10,17]). Although the
Madelung energy difference between hcp and fcc is small,
1:7�� 10�3kBT per particle, so is their zero-field free
energy difference: For hard spheres [19], the free energy
per particle of the fcc is about 1� 10�3kBT lower than that
of the hcp. For dipolar hard spheres, the hcp is expected to
be stable for � * 1, which is consistent with Fig. 2.

In order to study the effect of higher multipole moments
on the stability of the hcp phase, we calculate the exact
effective dielectric constants of the hcp and fcc structures
using the method described in Ref. [27]. Knowing the
effective dielectric constant �eff , the total Coulomb energy
per particle can be calculated from ����3E2=12 kBT��
��eff � �s�. According to the exact calculation, in the re-
gion where �=�s < 1 [28], the higher multipole moments
make the hcp structure even more favorable than in the
dipole approximation, and in the region where �=�s > 1,
the hcp is always more stable than the fcc, although the
higher multipole moments reduce the energy difference
between the two phases with respect to the dipole approxi-
mation. This gives us confidence that the stable hcp phase
is not an artifact of the dipole approximation but robust,
and might be observed experimentally. As the hcp phase is
difficult to realize in bulk colloidal suspensions [29], this
finding is of great importance.

In conclusion, we studied the phase behavior of dipolar
hard and soft spheres as a function of the dipole moment
strength � and the packing fraction  . We found very rich
phase diagrams with stable regions of (string-) fluid, fcc,
hcp, and bct phases, and regions of fluid-hcp and fluid-bct
coexistence, for dipolar hard spheres. For dipolar soft
spheres, we also found a stable region of the asymmetric
bco phase. We explain the stability of the bco phase based
on simple energy considerations. We find, that the hcp
phase is more stable than the fcc phase, because of its
lower energy, and more stable than the bct phase, because
of its higher entropy. Our results show that bulk hcp, bct,
and bco crystals, can be stabilized and therefore realized
experimentally by applying an external field. We stress that
these crystal phases are unstable in the absence of a field.
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