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Helicoid to Spiral Ribbon Transition
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We present a continuum description for the transition between the helicoid and spiral ribbon structures
of chiral materials. At a critical value of the ratio between the bending and stretching moduli, the Föppl–
von Kármán number, we encounter a continuous buckling transition from a straight helicoid to a spiral
ribbon. Two of the three persistence lengths of the ribbon become very short at the transition point,
indicating strong thermal shape fluctuations. The transition is discontinuous if the ribbon width is treated
as a free thermodynamic variable.
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FIG. 1. Characteristic chiral ribbon configurations. (a) Heli-
coid with �1 � �2 � 0 and �3 finite. The orthogonal ê and p̂
directions determine the coordinate system. (b) Isometric spiral
with �2 � 0 and both �1 and �3 finite. (c) Intermediate con-
figuration with a Föppl–von Kármán number close to its critical
value. Inset: Components of the Kirchhoff rotation vector ~�.
Only the ê direction is shown.
The molecules of life, such as proteins, DNA, RNA, or
the polysaccharides, are nearly all optically active due to
an absence of mirror symmetry, or chirality [1]. Molecular
chirality can be reflected in higher-level structural motifs
of biomaterials that are constituted from such molecules.
One familiar example is the helical organization of chitin
in arthropod cuticles [2], of collagen protein in skeletal
tissue [3], and of the cellulose fibrils in plant cell walls [4].
In these materials, twisted microfibrils rotate with respect
to each other along a direction perpendicular to the fibril
axis in the form of a helicoid [Fig. 1(a)]. The resulting
layered ‘‘plywood’’ organization provides helicoidal solids
with superior elastic properties, such as low Poisson ratios.
Another characteristic chiral motif is the spiral ribbon
[Fig. 1(b)]. Molecular bilayers composed of chiral lipids
or other chiral surfactants can self-assemble into spiral
ribbons or barber-pole tubules [5]. The helicoidal and
spiral ribbon structures would appear to constitute two
separate classes of chiral morphology, as is reflected in
their respective descriptions. The classical continuum the-
ory for chiral ribbons, due to Helfrich and Prost (HP) [6], is
based on the assumption that the ribbon is ‘‘isometric,’’ i.e.,
that it does not support elastic strain. Chiral twist can be
imposed on isometric ribbons only by winding them over
the surface of a cylinder [as in Fig. 1(b)] or a cone, which is
consistent with the observed spiral ribbon and tubule struc-
tures. On the other hand, if one does allow a ribbon to be
stretched but now forbids any lateral bending along its axis,
then the geometry of the ribbon is restricted to the family of
‘‘ruled surfaces’’ [7]. This family includes the helicoid, a
twisted minimal surface with zero mean curvature, and
other geometries such as the hyperboloid surfaces, but
not isometric spiral ribbons. Examples of intermediate
cases are, however, known, such as polypeptide � sheets
inside folded proteins [8]. A recent Monte Carlo simulation
by Selinger et al. [9] of chiral ribbons indeed encountered a
range of structures interpolating smoothly between the
helicoid and the isometric spiral ribbon with no discernible
transition point.

The central role of elastic strain in this context is re-
lated to the Theorema Egregium of Gauss, which states that
05=94(13)=138101(4)$23.00 13810
the Gaussian curvature K of an isometric surface must
remain constant under smooth bending deformations.
Bending a flat ribbon with K � 0 over a cylinder surface
maintains isometry, but twisting it into to a helicoid surface
with K < 0 necessarily introduces elastic strain. It is in-
deed easy to see that a ribbon is elastically stretched along
its edges if it is twisted up. The determination of the shape
of a surface with competing in-plane elastic energy and
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out-of-plane bending energy is a classical problem of
elasticity theory requiring the solution of a complex set
of nonlinear, coupled equations [10], due to Föppl and
von Kármán (FvK), that normally do not permit analytical
solution. The purpose of this Letter is to note that for chiral
ribbons the FvK problem is analytically tractable and that
there is in fact a sharp transition point between helicoids
and spiral ribbons. This transition point should be charac-
terized by strong thermal shape fluctuations.

Assume a ribbon of width w and length L� w. We will
use an in-plane orthogonal coordinate system with the p̂
direction running parallel to the ribbon axis and the ê
direction perpendicular to the ribbon axis [see Fig. 1(a)].
The ribbon axis is the line e � 0 and the ribbon edges are
at e � �w=2. We will assume that these ê and p̂ directions
represent 180� rotation axes. The Hamiltonian is the sum
of a bending energy Hb, an elastic energy Hs, and an
energy cost L for the ribbon edges:

H � Hb �Hs � L: (1)

Following HP, the bending energy is written as an expan-
sion to second order in the curvature tensor Cij of the
ribbon, consistent with the assumed rectangular symmetry:

Hb �
1

2

Z
d2S��eeC2

ee � �ppC2
pp � 2�epC2

ep

� 4�epC0Cep � 2�GK� (2)

(Cij � 0 for a flat ribbon). Here, �ij is the matrix of
bending energy moduli. The bending energy modulus
�eedescribes, for instance, the energy cost of bending the
ribbon lateral along its axis. Terms linear in Cee or Cpp are
forbidden by the assumed symmetry, but for a chiral ribbon
the term �epC0Cep, which is odd under mirror reflection, is
permitted. The quantity C0 plays here the role of a pre-
ferred spontaneous twist curvature. The Gaussian curva-
ture K, in the last term of Eq. (2), is related to the curvature
tensor by K 	 CeeCpp � C2

ep and has an associated bend-
ing modulus �G. Next, the elastic energy has the standard
form Hs �

1
2

R
d2S��ijuij�. The stress tensor �ij and the

strain tensor uij are related by �ij � �ijklukl, with �ijkl the
matrix of elastic coefficients. For a ribbon with isotropic
elastic properties, the only nonzero components are
�eepp � �, �epep � 2�, and �eeee � �pppp � 2�� �,
with � and � known as the Lamé coefficients. Finally,
the line energy L, with  an energy cost per unit length,
describes the energy cost of the edge of the ribbon.

The coupling between in-plane elastic strain and out-of-
plane bending follows from the definition of the strain
tensor [10]:

uij � u
ij �
1

2

@f
@xi

@f
@xj

: (3)

Here, u
ij �
1
2 �@iuj � @jui� depends only on the in-plane

displacement field ~u�~r� of the ribbon and f�~r� is the out-
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of-plane normal displacement. For a smoothly varying
f� ~r�, the curvature tensor equals Cij�@2f=@xi@xj. Using
�ij � �ijklukl, one can obtain from Eq. (3) a relation
between the in-plane stress and the local Gaussian curva-
ture K� ~r� [10]:

1

K0
�2 �~r� � �K� ~r�: (4)

Here, K0 �
4������
2��� is the 2D Young’s modulus and  � ~r�

is the Airy stress function [the stress tensor follows from
 �~r� by �ee � @2 =@p2, �pp � @2 =@e2, and �ep �

��@2 =@e@p�]. For a narrow ribbon, with stress-free
boundary conditions, the curvature should be nearly con-
stant along the transverse (ê) direction, in which case the
solution of Eq. (4) is straightforward. We then obtain a
simple expression for the ribbon Hamiltonian with �g � 0:

H=��eeŵC0� �
1

2

Z L

0
dp

�
Î1�̂

2
1 � Î2�̂

2
2 � Î3��̂

2
3 � 2�̂3�

�
�̂4

3

320=#� �̂2
1

� 2̂=ŵ
�
: (5)

We introduced here the Kirchhoff rotation vector ~��p� of
the ribbon [10], the rate of rotation along the ribbon axis of
an orthogonal coordinate system attached to the ribbon.
Taking p̂, ê, and the normal to the ribbon as the orthogonal
triad of unit vectors attached to the ribbon, the components
of the rotation vector are �1�p� � Cpp, the bending cur-
vature of the ribbon axis, �2�p� the in-plane elastic
‘‘splay’’ deformation of a ribbon, and �3�p� � Cep the
rotary twist of the ribbon along its axis (see Fig. 1, inset).
The dimensionless rotation vector is defined as �̂i�p� �
�i�p�=C0. The dimensionless prefactors of the quadratic
terms of Eq. (5) are Î1 � �pp=�ee, Î2 � #ŵ2=6, and Î3 �
2�ep=�ee. Next, # � K0ŵ4=�eeC2

0 is a dimensionless pa-
rameter and ŵ � C0w the dimensionless ribbon width.
Finally, ̂ � =�eeC0 is the dimensionless energy cost
per unit length of the edges of the ribbon.

The general form of the first three terms could have been
obtained by an expansion of the Hamiltonian to second
order in powers of the rotation vector ~��p�, excluding
terms that are symmetry forbidden [11]. Together, these
three terms constitute the well-known wormlike chain
(WLC) elastic energy of a semiflexible, chiral chain, which
has been very useful as a continuum theory for DNA
chains. Whether the physical properties of a chiral ribbon
also can be described by the WLC depends on the value of
the parameter #. In the limit #! 0, the fourth term of H
can be neglected, and H obviously reduces to the WLC
energy. Minimizing H with respect to ~��p� in this regime
gives �̂i�p� � �̂


i , with �̂

1 � 0, �̂


2 � 0, and �̂

3 � 1�

#̂
160Î3

, which corresponds to a helicoid of pitch �̂

3, zero

mean curvature, and Gaussian curvature K � ��
2
3 =

�1� �w�

3=2�

2�2. In the opposite limit, #! 1, the fourth
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FIG. 2. Ribbon energy minimum E�w� as a function of the
ribbon width w (schematic). The curve marked A corresponds to
a larger value of the Föppl–von Kármán number # and B to a
lower value. As a function of #, a first-order transition takes
place from a spiral ribbon state with a large width, case A, to a
helicoid state with a well-defined smaller width, case B.
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term is singular, �̂4
3=�̂

2
1, and not of the WLC form.

Minimizing H with respect to ~��p� for general #, gives

�̂ 

3 �

1

1� 2
�����
Î1

q
=Î3

; �̂

2 � 0;

�̂

1�#� �

�������������������������������������
1�����
Î1

q �̂
2
3 � 320=#

vuuut ;

(6)

for # > #c with #c � 320 Î1=21 �1� 2
�����
Î1

q
=Î3� . In the limit

#! 1, Eq. (6) corresponds to the isometric spiral ribbon
of the HP theory. As we reduce #, the twist curvature �̂


3

does not change, but the bend curvature �̂

1�#� of the

ribbon axis vanishes continuously at # � #c. For # <
#c, �̂



1�#� � 0, and one recovers a straight helicoid.

The parameter # � K0w
4C2

0=�ee evidently determines
the ribbon morphology. The physical meaning of # can be
understood by noting that the relative area increase �S=S
of a ribbon twisted by an amount C0 along its axis is an
even function of C0, and of order �wC0�

2. The elastic
stretching energy per unit area of a twisted ribbon is then
of the order K0�wC0�

4. The # parameter is thus the dimen-
sionless ratio of the stretching energy per unit area of
ribbon over �eeC2

0, the characteristic lateral bending en-
ergy per unit area. In the literature on elastic shells [12],
such a ratio is referred to as a FvK number. The physical
origin of the singular term �̂4

3=�̂
2
1 for #! 1 can now be

understood. In the #! 1 limit, the ribbon should be
isometric. Inserting the condition CeeCpp � C2

ep � 0 in
the Cee curvature term of the bending energy Eq. (2)
directly produces the singular term.

There is thus a sharp onset point for the helicoid/spiral
ribbon transformation as a function of #. The continuous
growth of the bending curvature �̂


1�#� for # > #c is
suggestive of a second-order structural phase transition,
though presumably ‘‘smeared’’ by the one-dimensional
nature of the problem. The elastic energy H [Eq. (5)] with
�̂i�p� � �̂


i indeed has a discontinuity in the second
derivative at # � #c. However, one encounters a surprise
for the orientational correlation length, or persistence
length, which would be expected to diverge at # � #c.
This persistence length can be computed from the varia-
tional energy 'H for small fluctuations around �̂ � �̂
.
For # < #c, 'H is an asymmetric variant of the WLC
energy:

'H/
1

2

Z L

0
dpfI1eff'�̂

2
1�I2eff�ŵ�'�̂

2
2�I3eff'�̂

2
3g; (7)

with I1eff � Î1 � � #320�
2�
4

3 , I2eff � Î2, and I3eff �
Î3 � � 3#160��


2
3 . Note that Î1eff vanishes at # � #c. Using a

technique familiar from studies of the WLC [13], the
orientational fluctuations of the ribbon around the helicoid
�̂i�p� � �̂


i described by Eq. (7) can be mapped onto the
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quantum fluctuations of the asymmetrical quantum top
[14]:

'Ĥ /
1

2



L̂2
1

I1eff
�

L̂2
2

I2eff
�

L̂2
3

I3eff

�
; (8)

with ~̂L the angular momentum operator. The three J � 1
eigenstates of 'Ĥ correspond to three separate orienta-
tional persistence lengths:

1=)1 �
kBT
2�eew



1

I2eff
�

1

I3eff

�
;

1=)2 �
kBT
2�eew



1

I3eff
�

1

I1eff

�
;

1=)3 �
kBT
2�eew



1

I1eff
�

1

I2eff

�
:

(9)

)3 is the persistence length of the tangent to the ribbon
axis, )2 the persistence length of the normal to the ribbon
surface, and )1 the persistence length of ê, the remain-
ing orthogonal direction. Since I1eff vanishes at # � #c,
both the )3 and )2 persistence lengths formally vanish at
# � #c. Physically, this means that near # � #c the ribbon
should be extremely flexible and subject to strong thermal
fluctuations in its orientation.

An interesting physical consequence of the helicoid to
spiral ribbon quasitransition is connected with the fact that
# depends on the ribbon width as w4. A plot of E�w�, the
energy minimum at �̂ � �̂
, shows two extrema as a
function of increasing ribbon width (see Fig. 2), separated
1-3
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by a singularity at # � #c. There is first a minimum at
ŵ
 � �160̂=# �̂
4

3 �1=5, with #�w
�< #c in the helicoidal
regime, followed by a maximum at ŵy for #�ŵy�> #c in
the spiral ribbon regime. Asymptotically, E�w! 1� � 0.
If the ribbon width is viewed as a free thermodynamic
variable that is to be determined by free energy minimiza-
tion, then, as is clear from Fig. 2, there are just two stable
states: a helicoidal ribbon of finite width w
 and an iso-
metric spiral ribbon with w! 1 (the barber-pole tubule in
actuality): Spiral ribbons of finite width are unstable. If w
is a free variable, then, as a function of the ratio K0C

2
0=�ee,

we should expect to encounter a discontinuous transition
from a helicoid to a spiral tubule.

A direct numerical test of the proposed transition would
be to compute the bending stiffness of the helical ribbons
obtained in the low-temperature Monte Carlo simulations
of Selinger et al. [9] and check whether their bending
stiffness vanishes at #�w� � #c. If the existence of the
transition indeed is confirmed, then it would be very inter-
esting to repeat the simulations at higher temperatures in
order to study the conformational fluctuations that are
predicted to be pronounced near #�w� � #c. Important
consequences of this transition for the case of � amyloid
fibers will be presented elsewhere.
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