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Ground State of Magnetic Dimers on Metal Surfaces
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We present model studies of the ground state for magnetic dimers on metal surfaces. We find it can be
neither ferromagnetic nor antiferromagnetic, but is often canted for nearest neighbors. Thus, the system
cannot be described using bilinear exchange. We give a criterion which can be used quite generally to
interrogate the local stability of ferromagnetically or antiferromagnetically aligned dimers, and which also
may be used to infer the canting angle when canted states are stable.
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The nature of spin dependent interactions between
nearby magnetic solids is a fundamental topic that has
occupied both theorists and experimentalists for decades.
It is assumed widely that the bilinear exchange interaction
of Heisenberg form is dominant. Then the interaction
between two magnetic ions 1 and 2 is �J12ê1 � ê2, where
ê1 and ê2 are unit vectors parallel to their moments. If J12 is
positive (negative), the ground state is ferromagnetic (anti-
ferromagnetic), and the state of maximum energy is anti-
ferromagnetic (ferromagnetic). The ground state is an
absolute minimum of the energy, while the highest energy
state is an absolute maximum. Studies presented here show
that for a simple system this picture is invalid. Our results
question the use of bilinear exchange to describe spin
dependent interactions in transition metal magnets by set-
ting forth an example where this fails badly.

Whether bilinear exchange is sufficient to describe
interactions between nearby magnetic ions has been dis-
cussed for a very long time. A careful analysis by Herring
[1] concludes that the simple bilinear exchange dominates
only in the limit of large separation between the ions. Also
we know experimentally that, in two classical magnetic
insulators, biquadratic exchange [an interaction propor-
tional to �ê1 � ê2�2] enters importantly [2,3]. Reference [3]
argues, correctly in our view, that such higher order ex-
change couplings are overlooked in the literature because
many experiments probe only small amplitude spin mo-
tions. Such data can always be parametrized by combina-
tions of bilinear coupling terms. More recently, in mag-
netic multilayers, biquadratic exchange enters importantly
[4]. One finds noncollinear orientations of magnetic mo-
ments in neighboring ferromagnetic films, driven by bi-
quadratic exchange.

We have carried out model calculations studying the
dependence of the energy of magnetic dimers on model
metal surfaces, as a function of the angle � between their
magnetic moments. These are motivated by very lovely
theoretical and experimental studies of 3d transition metal
dimers on the NiAl(100) surface [5]. We find, over wide
parameter ranges, dramatic deviations from the simple
05=94(13)=137203(4)$23.00 13720
cos� form provided by the simple Heisenberg model for
the effective exchange between nearest neighbor adsor-
bates. Our results are described by an empirical Hamil-
tonian with bilinear and biquadratic exchange. Thus, for
nearest neighbor adsorbate pairs on metal surfaces, we
expect a qualitative breakdown of the simple bilinear ex-
change picture. We find that the ground state of the mo-
ment pair is often neither ferromagnetic nor antiferro-
magnetic, but rather canted with angle controlled by the
ratio of the bilinear to biquadratic exchange. This is found
for only nearest neighbor pairs. We find that adsorbates on
next nearest neighbor sites or those with a larger separation
display magnetic interactions that are compatible with bi-
linear exchange, as Herring’s arguments require [1].

These results follow from a simple model description of
magnetic dimers on a metal surface. Realistic studies
would be desirable, for example, using density functional
treatments of real systems. While the present computa-
tional schemes allow a comparison between energies of
ferromagnetically and antiferromagnetically aligned mo-
ments [5], it is a challenge to carry out full calculations for
canted dimers on real surfaces. At the moment, we rely on
analyses of simpler models. Since we find canted ground
states for a wide range of model parameters, we argue that
such a behavior can be expected in real systems. Below we
also discuss how current density functional studies of
dimers can be used to inquire whether a canted state is
more stable than either of the collinear states.

We explore a semi-infinite simple cubic lattice, with a
(100) surface. There is a single orbital on each site, with
nearest neighbor hopping integrals of strength t. We as-
sume two magnetic ions, on nearby top sites, with a hop-
ping integral td between them, and t0 between each ion and
the atom below. Magnetic moments are driven by intra-
atomic Coulomb interactions of strength U, treated in
mean field theory. A local spin quantization axis is erected
on each magnetic ion site, and we treat the effective spin
dependent potential as in empirical tight binding calcula-
tions of exchange energies in bulk systems [6]. We explore
how the energy of the system changes as one moment is
3-1  2005 The American Physical Society
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FIG. 1. For our simulation of a pair of Cr atoms on the Mo
surface, we show the dependence of the interaction energy with
the angle � between the magnetic moments. In (a) we have the
ions on nearest neighbor sites, and the ground state is canted.
In (b)–(d) we show results for the case where the ions are on
second, third, and fourth neighbor sites. Here the effective
exchange coupling is well approximated by the simple bilinear
exchange whose sign alternates with distance. The solid curves
are our full calculations, and the dashed curve in (a) is a fit to the
form �J1�cos�� 1� � J2�cos

2�� 1�. In the calculations, the
occupation numbers are as described in the text; we have taken
t0 � 1, and we have direct hopping between the adsorbates of
strength td � 1, but only for nearest neighbors.

PRL 94, 137203 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
8 APRIL 2005
canted relative to the second by an angle �, with self-
consistency maintained as � is scanned.

There are issues which must be addressed in such an
analysis. If we change � and minimize the energy, the total
number of electrons in the system changes. This comes
about since our substrate is semi-infinite, and electrons
transfer from the surface complex into the bulk conduction
band as the moments rotate; in effect, they wander off to
infinity. This is encountered commonly in tight binding
analyses of surface phenomena [7] and has its origin in the
absence of the long ranged tail in the Coulomb interaction.
The tail forces the substrate to remain electrically neutral,
and electron charge transfer occurs only between the di-
mer and nearby surface atoms. We impose a Friedel sum
rule at each step of our calculation, which fixes the total
electron number. Then electron transfer occurs only lo-
cally. To satisfy the Friedel sum rule at each step, we shift
the energy of the orbitals on the magnetic ions, as others
have done [7].

The calculation of the total energy for each � is problem-
atic. One cannot simply sum the single particle energies,
since the interaction energy is double counted. One can
subtract half of the interaction energy, but it is not clear
how to treat the energy shift of the orbitals on the magnetic
ions when this is done. Formally, this is a self-energy
correction associated with electron transfer, but this is
not represented by an explicit term in the model
Hamiltonian. However, the derivative of the energy with
respect to � can be computed from the single particle
energies alone. If �i��� is the energy associated with the
single particle state i and ni��� is its occupation number,
then if E0��� is the ground state energy when the canting
angle is � and we change � by 	�, the change in ground
state energy is 	E0��� �

P
i�i���	ni���. This may be

calculated from the single particle Green’s function. We
calculate the energy as a function of � from @E0���=@�,
which allows us to project the ground state energy for-
ward in �.

We choose model parameters with real materials in
mind. We can crudely represent various substrates by
positioning the Fermi level EF within the bulk d band.
We have in mind nonmagnetic substrates from the 4d
transition metal series, and we mimic a given substrate
by choosing EF so that the number of electrons in our
substrate band corresponds to the average number of elec-
trons per d orbital in the real material. Thus, Mo is simu-
lated by choosing EF to give an orbital occupancy of 1.08
electrons (the zero of energy is the midpoint of our sub-
strate energy band, and t � 1). We simulate particular
adsorbates through the electron number in the d orbitals
of the isolated adatom. For example, Mn is simulated
through the choice 1.0, Cr by 0.8, and so on. We refer to
the various complexes by elemental name to orient the
reader regarding the qualitative nature of the system being
considered.
13720
We start by calculating the dimer ferromagnetic state
�� � 0� self-consistently. In doing so, we shift the atomic-
orbital energy of the magnetic ions (keeping EF fixed) to
obtain the required number of electrons nd in the adsorbed
ion sites. As an illustration, we begin by considering a Cr
dimer adsorbed on Mo. We take U � 8, which leads to a
local magnetic moment m � 0:77 on each ion for td �
t0 � 1. In Fig. 1 we show results for the change in the
ground state energy calculated with respect to the ferro-
magnetic state [	E0��� � E0��� � E0�0�] for different in-
terion separations. The most striking curve is that for the
nearest neighbor pair. Their ground state is canted, and
both the ferromagnetic and antiferromagnetic states are in
fact unstable. This feature has not been probed in density
functional calculations such as those reported in Ref. [5],
because the quantization axis is held rigidly fixed and is
parallel (collinear) for both ions. When the ion pair is
separated beyond the nearest neighbor distance, the ground
state is either antiferromagnetic or ferromagnetic. In this
case, the energy as a function of � is accounted for nicely
by the simple cos� from bilinear exchange. We see in
Fig. 1 that, as we move the ion pair apart, the sign of the
interaction energy alternates. In our calculations, we find
canted ground states only for nearest neighbor pairs. We
emphasize that the results displayed in Fig. 1 are not
3-2
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obtained only for a narrow parameter range, but we find
this behavior as we imitate various substrate-adsorbate
combinations.

For nearest neighbor pairs, we can fit nicely the energy
as a function of � by assuming we have present bilinear
and biquadratic exchange, so 	E��� � �J1�cos�� 1��
J2�cos2�� 1�. A fit to this form is the dashed curve in
Fig. 1(a). One finds a canted ground state whenever J2 <
�jJ1j=2, a condition we commonly find for nearest neigh-
bors. Most interesting would be a case where J2 > jJ1j=2.
Then both the antiferromagnetic and the ferromagnetic
state are locally stable, with one being the true ground
state. A barrier of substantial height would be present
between the higher energy metastable state and the ground
state. Such a situation would be of great interest, since one
would realize a long lived metastable excited state.
However, we have not encountered a model system which
displays this behavior, though we see in principle no reason
why this cannot occur.

In Fig. 2 we illustrate other substrate-adsorbate combi-
nations where canted ground states are realized. Here EF is
3.7, which gives a substrate band with 1.88 electrons per
bulk site, simulating Pt. In Fig. 2(a) we show calculations
for nd � 0:9, whereas in Fig. 2(b) we have nd � 1:2. The
latter is a means of modeling a Co dimer on Pt. The solid
curves are for t0 � td � 1, the dashed curves are for t0 �
1:2 and td � 1, and the dot-dashed curves are for t0 � 1
and td � 1:2. The last two parameter sets model the con-
traction of bond lengths from lattice relaxation. The con-
clusion that the ground state is canted seems robust also
with respect to this feature.
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FIG. 2. The energy as a function of the canting angle of a
dimer pair on a substrate with 1.88 electrons per orbital.
In (a) the ions in the dimer have nd � 0:9 electrons in each d
shell, and in (b) the ions have nd � 1:3 electrons. The solid
curves are calculated for the case t0 � td � 1, the dashed curves
for t0 � 1:2 and td � 1, and the dot-dashed curves for t0 � 1 and
td � 1:2.
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In full density functional calculations such as those in
Ref. [5], the energy of the optimized ferromagnetic state of
the dimer is compared with the energy of the optimized
antiferromagnetic state. That theory was not set up to ex-
plore whether a canted state exists whose energy is lower
than that of these two special configurations. However,
from such restricted calculations, one can explore the sta-
bility of both the ferromagnetic and antiferromagnetic
states. One can generate an expression for the change in
energy associated with very small cantings of the spins.
This is done, for instance, when effective exchange cou-
plings are calculated between nearby spins [8]. We may
write the change in energy of the system as D����2, where
�� is the angular deviation from either the ferromagnetic
or the antiferromagnetic configuration. If the ferromag-
netic ground state is an absolute minimum, then DFM is
positive while DAFM is negative. The converse is true if the
antiferromagnetic ground state is an absolute minimum. If
a canted state exists, both will be negative. One cannot tell
from this criterion what the mean field canting angle will
be, but the canting angle can be inferred if one assumes that
only bilinear and biquadratic exchange is present, since J1
and J2 may be deduced by fits to the small angle behavior
of the energy surface. Similarly, if DFM and DAFM are both
positive, then we have the situation (not found by us) where
the excited state is metastable. One may derive expressions
for the two stiffnesses just described:

DFM �
1

4�

Z EF

�1
d� Im trf	2g

FM"
21 ���	1g

FM#
12 ���g; (1a)

DAFM � �
1

4�

Z EF

�1
d� Im trf	2g

AFM#
21 ���	1g

AFM"
12 ���g:

(1b)

A derivation of Eq. (1a) is in Ref. [8(b)], and Eq. (1b) is
obtained with a similar procedure. Here, g�ij is the single
particle Green’s function for spin � in real space, and the
subscripts i and j refer to dimer sites. The quantity 	i is the
intra-atomic exchange operator on site i. For our model, all
quantities are scalars, and the trace may be removed. In a
full calculation, one may express these quantities in a
representation with additional subscripts in a local orbital
representation, and then the trace is over orbital indices.
We have calculated these two stiffnesses for various cases
to test the method which works well. It would be of great
interest to see calculations of these exchange stiffnesses for
full density functional analyses. In the literature, one may
find examples of such calculations for situations where the
ferromagnetic ground state is stable [8], but we know of no
examples where this has been done for antiferromagneti-
cally coupled spins.

The frequency spectrum of small amplitude spin excita-
tions of the dimer is of interest. We have carried out
calculations by extending our earlier discussion [9] of
isolated magnetic ions on metallic surfaces to dimers.
Now the local frequency dependent transverse susceptibil-
3-3
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FIG. 3. The frequency spectrum of small amplitude spin fluc-
tuations out of the ferromagnetic state for one of the ions in the
dimer pair considered in Fig. 1. We illustrate the frequency
spectrum through the calculation of Imf�11

�;����g, as discussed
in the text. In (a) we have the spectrum of the nearest neighbor
pair, in (b) that of next nearest neighbors, and in (c) and (d) that
of third and fourth neighbors, respectively.
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ity has indices �i; j� which refer to the adsorbate sites; i.e.,
we have now quantities we refer to as �ij

�;����. In Fig. 3,
for the dimer pair considered in Fig. 1, we display
Imf�11

�;����g, which gives the frequency spectrum of
spin fluctuations of one member of the dimer, when they
are in the ferromagnetic state. In all four cases, we see the
response function has a pole at zero frequency, which leads
to the rapid rise in the frequency spectrum as the zero
frequency is approached from above (in the calculations
a small imaginary part is added to the frequency). This is
the zero frequency Goldstone mode of the pair, a result of
the invariance of the Hamiltonian under rigid spin rota-
tions. When ferromagnetism is stable [(b) and (d)], we see
a positive frequency optical mode, whereas the optical
mode has a negative frequency when it is unstable [(a)
and (c)].

The principal result of our study for nearest neighbor
magnetic ions adsorbed on our model metal surface is that
the simple picture of bilinear exchange coupling appears to
break down qualitatively, to the point that the ground state
can be neither ferromagnetic nor antiferromagnetic as
commonly assumed, but rather is often canted. While our
conclusions are based on a simple model, we are convinced
that this possibility should be realized for real substrate-
adsorbate combinations. We propose that future density
functional studies of such systems examine the stability
of the ferromagnetic and antiferromagnetic configurations
through calculations of the exchange stiffness defined
13720
above in Eqs. (1). It should be noted that canted ground
states driven by biquadratic exchange have been encoun-
tered in past studies. Its presence is well established in
magnetic multilayers [10], and it has been suggested as
well to explain spin canting in the compound Gd Mn [11].

Our final remark concerns the ab initio calculation of
exchange couplings in magnetic metals, such as those
described in Ref. [8]. What the authors actually calculate
is the energy change associated with small amplitude
twists in the spin system, very much as we discussed above
in the paragraph which precedes our Eqs. (1). They then
deduce bilinear exchange couplings between adjacent
magnetic ions by assuming that only bilinear exchange is
operative. The calculations reported here raise serious
questions regarding the validity of such assumptions for
nearest neighbor pairs. This may be one of the most
important considerations when such microscopically de-
rived effective exchange couplings are used to describe
structures such as thin domain walls, where the angle
between adjacent magnetic moments is not particularly
small.
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