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Junction of Three Quantum Wires: Restoring Time-Reversal Symmetry by Interaction
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We investigate the transport of correlated fermions through a junction of three one-dimensional
quantum wires pierced by a magnetic flux. We determine the flow of the conductance as a function of
a low-energy cutoff in the entire parameter space. For attractive interactions and generic flux the fixed
point with maximal asymmetry of the conductance is the stable one, as conjectured recently. For repulsive
interactions and arbitrary flux we find a line of stable fixed points with vanishing conductance as well as
stable fixed points with symmetric conductance �4=9��e2=h�.
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Electronic transport through quasi-one-dimensional
(1D) systems is of current experimental and theoretical
interest. In one spatial dimension correlations play an
important role and the physical properties of interacting
fermions show distinctive non-Fermi liquid features.
Generically such systems can be described as Tomonaga-
Luttinger liquids (TLLs) characterized by a vanishing qua-
siparticle weight and power-law scaling of correlation
functions [1]. For spinless fermions, on which we focus
here, the characteristic exponents are expressible in terms
of the interaction dependent TLL parameter K. For repul-
sive interactions 0<K < 1, while K > 1 in the attractive
case. In TLLs inhomogeneities have a dramatic effect as
can be inferred from the singular behavior of response
functions of homogeneous models [2,3].

In an important first step the conductance G through
a TLL with a single impurity was understood [4,5]. For
vanishing energy scale s (e.g., temperature) and 0<
K < 1, G tends towards 0 following a power law. The
low-energy physics is governed by the ‘‘decoupled chain’’
fixed point (FP). The scaling dimension of a hopping
term connecting two open ends is 1=K and leads to G /

s2�1=K�1�. One can understand this behavior in a simple
picture. Because of the interaction the self-energy develops
long range oscillatory behavior and the scattering off the
resulting effective impurity potential leads to the power-
law suppression of G [6–8]. For K > 1, the conductance
approaches the impurity free limit. Close to the ‘‘perfect
chain’’ FP an impurity has scaling dimension K and the
correction to the impurity free conductance scales as
s2�K�1�. In this case the effective impurity potential leads
to a resonance at the chemical potential.

Recently junctions of several quasi-1D quantum wires
were realized experimentally with single-walled carbon
nanotubes [9,10]. They might form the basis of electronic
devices. Already the physics of the three wire junction
(Y junction) is considerably richer than the one of a single
impurity. Taking into account correlations transport
through such systems was investigated theoretically in
Refs. [11,12]. These studies posed a number of interesting
questions. In Ref. [12] a symmetric triangular Y junction
05=94(13)=136405(4)$23.00 13640
pierced by a magnetic flux 	 was studied. In this geometry
time-reversal symmetry is broken. In the noninteracting
case this generically leads to an asymmetry of the con-
ductance from wire 
 to wire 
0 and vice versa: G
;
0 �

G
0;
. For K > 1 at flux 	 � ��=2 one FP was found
applying an exact method adopted from boundary confor-
mal field theory. The FP corresponds to the case of maxi-
mal asymmetry of G
;
0 . We here consider TLL wires
connected to semi-infinite Fermi liquid (FL) leads with
TLL-FL contacts that are modeled to be free of fermion
backscattering. The results of Ref. [12] obtained for semi-
infinite TLLs can be extended to our modeling. Then
maximal asymmetry is given by G
;
0 � 1�0� and G
0;
 �
0�1� in units of the conductance quantum e2=h [13]. The
scaling dimension of the most relevant operator at this FP
is � � 4K=�3� K2� and the correction to the FP conduc-
tance scales as s2���1� [12]. For 1<K < 3, 2��� 1�> 0,
and the ‘‘maximal asymmetry’’ FP is attractive. This im-
plies that independently of the junction parameters at low-
energy scales the conductance is 1 from 
 to 
0 and 0 from

0 to 
 or vice versa. It was conjectured that for 1<K < 3
and all 	, except j	j=� being integer, this FP is the only
stable one.

We investigate the same physical problem considering
arbitrary fluxes and attractive as well as repulsive inter-
actions. An approximation scheme based on the functional
renormalization group (FRG) method is used. It was earlier
applied successfully to transport problems in inhomoge-
neous TLLs. By comparison with numerical results and
exact scaling relations, this scheme was shown to be reli-
able for 1=2 
 K 
 3=2. In particular, the scaling dimen-
sions of the two FPs of the single impurity problem come
out correctly to leading order in the interaction U [7,8]. For
the Y junction we here confirm the conjectured stability of
the maximal asymmetry FP for all 	, with j	j=� not
integer, and reproduce the scaling dimension � to leading
order in U. For U > 0 and arbitrary 	 a line of stable FPs
with G � 0 is identified. In cases with symmetric conduc-
tance we suppress the indices on G. We surprisingly find
additional ‘‘perfect junction’’ FPs with symmetric conduc-
tance G � 4=9 that for U > 0 are stable and have a scaling
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dimension not discussed before. In a Y junction of non-
interacting wires without flux, G � 4=9 is the value maxi-
mally allowed by symmetry [11]. Although time-reversal
symmetry is explicitly broken, for systems that flow to-
wards the perfect junction FPs the electron correlations
cause the conductance—an observable that is commonly
believed to indicate this breaking of symmetry—to behave
as if the symmetry were restored. In a certain sense (see
below) this also holds for systems that flow towards the line
of G � 0 FPs and thus for all parameters.

Our wire Hamiltonian is

H
 � �
X1
j�1

�cyj;
cj�1;
 � H:c:�

�
XN�1

j�1

Uj

�
nj;
 �

1

2

��
nj�1;
 �

1

2

�
(1)

in standard second-quantized notation. The different wires
are indicated by an index 
 � 1; 2; 3. The amplitude of the
nearest neighbor hopping is set to 1. The nearest neighbor
interaction Uj is allowed to depend on the position. It is set
to zero for j > N, i.e., the wires of length N are connected
to noninteracting leads. Close to the contacts the inter-
action is switched off (spatially) smoothly to avoid any
fermion backscattering [8]. The bulk value of the inter-
action is denoted by U. We here consider the half-filled
band case. To prevent depletion of the interacting region
we shifted the operator nj;
 by the average density 1=2. The
model with interaction jUj< 2 across all bonds (not only
the ones within 1; N�) shows TLL behavior with [14]

K �

�
2

�
arccos

�
�
U
2

��
�1
: (2)

The Y junction sketched in Fig. 1 is described by

HY � �tY
X3

�1

�cy1;
c0;
 � H:c:� � V
X3

�1

n0;


� t4
X3

�1

�ei	=3cy0;
c0;
�1 � H:c:�; (3)

where we identify the wire indices 4 and 1.
Our starting point to calculate the linear response con-

ductance of
P3


�1 H
 �HY is an exact hierarchy of differ-
ential flow equations for the self-energy �� and higher
order vertex functions (in the presence of the interaction,
the leads, and the junction), with an infrared energy cutoff
1

2

3

V
φ

Yt

t∆

FIG. 1. Symmetric junction of three quantum wires.
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� as the flow parameter. It is derived using the FRG. The
hierarchy is truncated by neglecting n-particle vertices
with n > 2, and the 2-particle vertex is parametrized by a
renormalized nearest neighbor interaction U�. This im-
plies that terms of order U2 are only partly taken into
account and that �� is frequency independent. The im-
portant spatial dependence of �� is, however, fully kept.
The details of this procedure are given in Refs. [7,8]. At the
end of the flow (at � � 0), the self-energy can be regarded
as an effective, N-dependent impurity potential � with
nonvanishing matrix elements �j;j and �j;j�1, where j is
restricted to the interacting region. Because of the symme-
try of the junction the matrix elements are the same for the
three TLL wires. We here focus on the zero temperature
case for which the flow equations can numerically be
solved for up to N � 107 lattice sites [7,8]. Generically
�j;j and �j;j�1 oscillate around an average value with an
amplitude that decays slowly with an increasing distance
from the junction.

The conductance G
;
0 � jt
;
0 j2 can be calculated from
the effective transmission t
;
0 (at the chemical potential
� � 0), which in turn can be expressed in terms of real
space matrix elements of one-particle Green functions of
the system. Using single particle scattering theory [8], the
conductance can be written as

G
;
0 �
4�Img�2je�i	 � gj2

jg3 � 3g� 2 cos	j2
; (4)

withg � �� V � t2YG1;1�=jt4j. The Green function G is ob-
tained by considering � as an effective potential for a
single wire setting tY�0 and G1;1 denotes its diagonal ma-
trix element taken at site j � 1. It is evaluated at energy
"� i0 with " ! 0. Equation (4) holds if 
; 
0 are in cyclic
order. G
0;
 follows by replacing 	 ! �	. For symmetry
reasons we have only to consider 0 
 	 
 �=2. In parti-
cular Eq. (4) can be applied for U � 0 and shows that the
conductance can be parametrized by the flux and a single
complex parameter g. Via the flow of the self-energy G1;1

for U�0 develops an additional dependence on (tY; t4; V),
U, and most importantly on N. The energy scale �N �
�vF=N (with the Fermi velocity vF) is a natural infrared
cutoff of our problem [8]. To obtain a comprehensive
picture of the low-energy physics, we investigate the flow
of g as a function of �N and use Eq. (4) to calculate G
;
0 .
In Fig. 2 the flow of g is shown for different 	 (and U �
�1). Each line is obtained for a fixed set of junction
parameters (tY; t4; V) with N as a variable. As Img has
the opposite sign of ImG1;1 < 0, it is restricted to positive
values.

Equation (4) allows for three special conductance situ-
ations which turn out to be the FPs of the flow. On the real
axis, the conductance G vanishes except at special,
	-dependent points. They are given by the crossings of
the real axis with the set C�	� (thick line in Fig. 2), on
which the reflection R � 1� jt
;
0 j2 � jt
0;
j

2 takes a
local minimum. For 	 � 0, C�0� is given by the circle
5-2
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FIG. 2 (color online). Flow of g. Arrows indicate the direction for U < 0. For U > 0 it is reversed. For details see the text.
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�Reg�1=2�2��Img�2��3=2�2. For 	>0, C�	� has a
more complex analytical form not presented here. At the
crossings the conductance is symmetric with G � 4=9.
They are located at g � �2 cos�	=3�, 2 cos���	�=3�,
and in Fig. 2 are indicated as circles and a diamond. As a
peculiarity of 	 � 0 on C�0� one finds G � 4=9 for all
Img, not only Img � 0. A situation with G � 0 is also
reached for jgj ! 1. For 0<	 
 1=2 and g � ei	

Eq. (4) yields G
;
0 � 1 and G
0;
 � 0. At this point,
indicated by squares in Fig. 2, maximal asymmetry of the
conductance is achieved.

We next discuss the FP scenarios depicted in Figs. 2(a)–
2(d). For U � 0 the general form of the flow diagrams is
independent of the absolute value and sign of U. In
Figs. 2(a)–2(d) results for U � �1 are shown. At 	 � 0
we find two perfect junction FPs with G � 4=9 and a line
of decoupled chain FPs with G � 0 (real axis). For all U <
0 the perfect junction FP at g � 1 (diamond) is the only
stable FP. All trajectories are attracted towards C�0� and
reach this FP following C�0�. For all U > 0 it turns un-
stable and the line of decoupled chain FPs is stable. In
addition, the perfect junction FP at g � �2 (circle) is
stable. The basin of attraction of g � �2 is given by
C�0�. Increasing 	 from 0 the perfect junction FP at g �
1 splits up into three FPs—the two perfect junction FPs at
g � 2 cos���	�=3� and the maximal asymmetry FP at
g � ei	. For all U < 0 the latter is the only stable FP but
becomes unstable for U > 0. A third perfect junction FP is
13640
located at g � �2 cos�	=3�. For all U > 0 each of the
three perfect junction FPs has a basin of attraction given by
one of the three parts of C�	� which are separated by the
maximal asymmetry FP. In addition, for U > 0 the line of
decoupled chain FPs is stable. This scenario holds up to
	 � �=2, at which the perfect junction FPs are at g �

�
���
3

p
, g � 0, and the maximal asymmetry FP is at g � i.

For 	 � �=2 and U > 0 there is a single trajectory that
runs along the imaginary axis to infinity (leading to G � 0)
and does not bend back towards the real axis as all other
trajectories at U > 0 do. In the mapping of the complex
plane onto the Riemann sphere, the g � 1 FP (north pole)
is part of the projected line of decoupled chain FPs and
shows the same stability properties and scaling dimension.

To obtain the scaling dimensions of the FPs, we generi-
cally analyze the scaling of G
;
0 as a function of �N with
respect to the FP conductance which is 1, 4=9, or 0 depend-
ing on the FP studied. For sufficiently large N (in some
cases up to 105 sites are required) we find power-law scal-
ing close to all FPs. In cases where the FPs are not stable
this scaling does not present the asymptotic behavior, but
exponents smaller than 0 can still be read off at intermedi-
ate N. Approaching the perfect junction FPs along C�	�
for 	> 0, Eq. (4) yields G
;
0 � 4=9 / Img; i.e., G
;
0 �
4=9 and Img scale with the same exponent. The scaling
dimensions of the perfect junction FPs at 	 � 0 cannot be
read off from the conductance as G � 4=9 on C�0�, and we
use the scaling of Img.
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FIG. 3. Scaling exponents close to FPs.
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The scaling exponent of the maximal asymmetry FP is
independent of the flux 	> 0 and the direction from
which it is approached (U < 0) or in which it is left (U >
0). Its U dependence is shown in Fig. 3 (squares) and
agrees to leading order in U with the prediction 2��� 1�
(solid line) [12], with � � 4K=�3� K2� and K given in
Eq. (2). In our scheme terms of order U2 are only partly
included, and we cannot expect agreement to higher order.
The nonmonotonic behavior of 2��� 1� is not reproduced
and in our approximation the maximal asymmetry FP stays
attractive for all U < 0. For small to intermediate jUj with
TLL parameters 1=2 
 K 
 3=2 we confirm the conjec-
ture of Ref. [12].

For the line of decoupled chain FPs we find for all 	 the
same scaling exponent �s, as found for the single impurity
problem close to the respective decoupled chain FP, apply-
ing the FRG. Its dependence on U is shown in Ref. [8] and
agrees to leading order with 2�1=K � 1�.

As discussed above, the 	 � 0 perfect junction FP at
g � 1 [diamond in Fig. 2(a)] has properties different from
those of the other perfect junction FPs (circles in Fig. 2).
The scaling exponent � of the latter FPs is independent
of 	 and is shown in Fig. 3 (circles). To leading order it
is given by � � U=�3�� (dashed line). This form does
not coincide with the expansion of any of the above
K-dependent exponents [after using K � 1�U=�; see
Eq. (2)]. We thus find a new scaling dimension. Since
higher order terms are only partly included, we cannot
determine the functional dependence of � on K. To derive
such an expression presents a challenge for methods that
do not require approximations in the strength of the inter-
action. For the 	 � 0 perfect junction FP at g � 1 the
scaling exponent (of Img) is, up to our numerical accuracy,
equal to ��. For junction parameters that initially do not
fall onto C�0�, but are close to it, one can read off an
exponent from the conductance that describes how C�0�,
with G � 4=9, is approached (U < 0) or left (U > 0). It is
equal to the FRG exponent �w of the perfect chain FP in
the single impurity problem. Its U dependence is presented
in Ref. [8] and agrees with 2�K � 1� to leading order.

The appearance of stable FPs with symmetric conduc-
tance G � 4=9 at U > 0 is a surprising result. Even though
time-reversal symmetry is explicitly broken at 	> 0, due
to correlations the conductance of systems with parameters
13640
on C�	� behaves as if time-reversal symmetry is restored.
Close to the line of decoupled chain FPs the relative
difference jG
;
0 �G
0;
j=�G
;
0 �G
0;
� scales as ��s=2

N
and thus vanishes if U > 0. This implies that G
;
0 and
G
0;
 become equal faster than they go to zero. In that sense
also on this line of FPs and thus for all junction parameters
time-reversal symmetry is restored if U > 0.

Using the FRG we determined the complete renormal-
ization group flow for a TLL Y junction pierced by a
magnetic flux. Besides uncovering a new type of low-
energy physics, we demonstrated the power of our approxi-
mation scheme. Usually field theoretical models are used
to investigate the transport properties of inhomogeneous
TLL applying methods that are specific to such models.
This way exact results for either fairly simple geometries
(single impurity [5]) or restricted parameter regimes [12]
were obtained. Our method can be applied to microscopic
models with arbitrary junction parameters and provides
results for the conductance that are accurate for small to
intermediate jUj. It can also be used to study transport on
intermediate and large energy scales [8]. Furthermore, the
technique can be applied to investigate the transport
through more complex networks of TLLs that might be-
come important in future nanoelectronic applications.
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