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Structural Arrest in an Ideal Gas
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We report a molecular dynamics study of a simple model system that has the static properties of an ideal
gas, yet exhibits nontrivial ‘‘glassy’’ dynamics behavior at high densities. The constituent molecules of
this system are constructs of three infinitely thin hard rods of length L, rigidly joined at their midpoints.
The crosses have random but fixed orientation. The static properties of this system are those of an ideal
gas, and its collision frequency can be computed analytically. For number densities NL3=V � 1, the
single-particle diffusivity goes to zero. As the system is completely structureless, standard mode-coupling
theory cannot describe the observed structural arrest. Nevertheless, the system exhibits many dynamical
features that appear to be mode-coupling-like. All high-density incoherent intermediate scattering
functions collapse onto master curves that depend only on the wave vector.
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There probably exist more theories for the glass transi-
tion than for any other phenomenon in condensed matter
physics except high-Tc superconductivity (see, e.g., [1–7]).
Some of these theories assume that the glass transition
reflects an underlying (possibly frustrated) thermodynamic
phase transition, others describe the glass transition as a
purely kinetic phenomenon. One of the most widely used
theories of the glass transition is mode-coupling theory
(MCT) [3,4,8]. In the standard version of MCT, the glass
transition is kinetic in nature but it is caused by the exis-
tence of static structural correlations in the system that
vitrifies. It is probably fruitless to search for the ‘‘true’’
theory of the glass transition, because not all glasses appear
to be equivalent [9,10]. However, it is important to disen-
tangle, as much as possible, the roles of structural correla-
tions and purely kinetic effects in the absence of such
correlations. In the present Letter, we report simulations
of a model system that has the structural properties of an
ideal gas. If this system undergoes dynamical arrest, this is
a purely kinetic effect. Our aim is to describe the character-
istic features of vitrification in this ideal gas.

The model system that we use contains particles that
consist of three mutually perpendicular line segments of
length L, rigidly joined at their midpoints. This system of
3D ‘‘crosses’’ is a generalization of the hard-needle model
that had been developed to study topological effects on
rotational and translational diffusion [11]. Earlier papers
already implicitly [2] or explicitly [12] suggested that
systems consisting of rigidly joined line segments might
provide interesting models to study the glass transition.
However, to our knowledge, no numerical studies of such
ideal 3D glass formers have been reported. Rather, a
lattice-based version of the hard-needle model has been
studied by several authors as a model for orientational
glass formers [13]. In general, crosses have both transla-
tional and rotational motion. However, as we focus on the
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normal (translational) glass transition, we suppress the
rotational motion of the crosses (infinite moment of iner-
tia). This greatly speeds up the simulations. We expect that
the suppression of rotational motion does not qualitatively
affect the translational structural arrest. Of course, this
remains to be demonstrated. As the crosses have zero
volume and zero excluded volume, all static thermody-
namic quantities are exactly known. By random insertion,
one can trivially generate a representative equilibrium
configuration at any density. As our model is an ideal
gas, it has no thermodynamic phase transitions. However,
as we discuss below, the dynamics are highly nontrivial. In
our simulations, we choose the length L of the arms of the
cross as the unit of length, the thermal energy, kBT as the
unit of energy, and the mass m of a particle as the unit of
mass. Initial configurations were generated by inserting
particles with random position and orientation into the
simulation box. The particles were given a Maxwellian
velocity distribution. The total momentum was set equal
to zero. We employed simple cubic periodic boundary
conditions. We use an event-based molecular dynamics
simulation to study the dynamics similar to the method
described in Ref. [14]. During a collision, the momentum
components perpendicular to the plane containing the two
colliding arms are exchanged. Most runs were performed
on systems of 512, 1728, and 4096 particles. We found that
finite-size effects were negligible in the density regime that
we studied. The reduced densities [
 � �NL3=V�] in our
simulations varied from 1 to 27. As a test of the molecular
dynamics algorithm, we computed the collision frequency
�c for all densities between 
 � 1 and 27 and compared it
with the (exact) kinetic-theory expression �c � �9=4������
�

p

. At all densities, the simulation data agree to within

the statistical error with the analytical expression, suggest-
ing that our algorithm does not miss collisions. In a typical
run, results were obtained by averaging over ten indepen-
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dent starting configurations. In addition, we averaged over
15 time origins separated by 5 time units. The simulations
ran for the time it takes the smallest nonzero wave vector
component of the dynamic structure factor S�q; t� to decay
to 1=e, or for 109 collisions (whichever time is smaller).
All components of S�q; t� decay completely in 109 colli-
sions for the 512- and 1728-particle systems.

After a ballistic regime (hr2i 
 t2), the mean-square
displacement (MSD) becomes diffusive (hr2i 
 t) at longer
times (Fig. 1). The time interval between the ballistic and
the diffusive regions increase with 
. The long-time
tagged-particle diffusivity (inset of Fig. 1) appears to de-
crease exponentially with increasing 
. This suggests that
the rate-limiting step in diffusion is the creation of a
‘‘cavity’’ around a particle, such that the topological con-
straints that inhibit its motion are relieved. The reversible
work needed to create a volume �V is equal to P�V. For
an ideal gas (P � 
kT) the probability to form a volume
�V by a spontaneous fluctuation is exp��
�V�. From the
observed exponential density dependence of the diffusiv-
ity, we estimate that a cavity with volume �V�  0:45L3 is
needed to enable diffusion. This exponential behavior of
the diffusivity is very different from the algebraic density
dependence of the rotational diffusion constant observed in
systems of translationally fixed needles [13].

To gain a better understanding of the mechanism re-
sponsible for single-particle diffusion, we considered the
probability distribution of the particle displacements at a
fixed time interval. Both in the ballistic and diffusive
regimes, the probability is Gaussian, but in between there
are marked deviations from Gaussian behavior. �2 �
3hr4i

5�hr2i�2
� 1 gives a convenient measure of departure from

Gaussian behavior [Fig. 2(a)]. Both the time range where
10
−2

10
0

10
2

10
−6

10
−4

10
−2

10
0

10
2

t

<
r2 >

0 10 20
10

−5

10
−3

10
0

ρ

D

ρ = 1 

ρ=20 

FIG. 1 (color online). Mean-square displacement of 3D
crosses for different densities. For t � �col, the motion is ballistic
and hr2i 
 t2. At long times, the motion becomes diffusive
(hr2i 
 t). Inset: Tagged-particle diffusivity computed from the
long-time behavior of the mean-squared displacement.
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�2 is significantly different from zero and the maximum
magnitude of �2 increase with 
. One mechanism that can
cause a non-Gaussian displacement distribution is the ex-
istence of inhomogeneities in the particle displacements
[15]. In Fig. 2(b) we plot the percentage of the MSD
carried by the 5% of the particles that have the largest
displacement in the time interval considered (in what
follows, we call these the ‘‘mobile particles’’). The corre-
lation of the fraction of the MSD carried by the most
mobile particles with �2 suggests that dynamic heteroge-
neity is the cause of non-Gaussian behavior in the present
system. The long-time decay of the incoherent intermedi-
ate scattering function Fs�q; t� � h1N

P
j expfi ~q � �~rj�t� �

~rj�0��gi appears to be slower than exponential at high
densities (Fig. 5). The decay appears stretched exponential
(Fs�q; t� ’ exp���t��

��), as is observed in many experi-
ments on glassy systems. Such behavior is reproduced
both in the mode-coupling picture [3] and in the (funda-
mentally different) dynamic facilitation theory [7]. The
slope � is 2 for ballistic decay and 1 for diffusive decay
(Fig. 3). For large 
, � appears significantly smaller than
1.0 over a wide time interval and, as is shown in the inset of
Fig. 3, a stretched exponential fits the long-time decay over
almost three decades. However, a closer look shows that a
stretched exponential cannot describe Fs�q; t�. This can be
seen in Fig. 4, where we plot the time-dependent exponent
of a local fit of Fs�q; t� to a stretched exponential. The
exponent � in Fig. 4 never reaches an intermediate plateau
value. Rather, it varies with time and approaches the value
� � 1 at long times. Hence, the long-time decay of Fs�q; t�
is simply exponential and it is nowhere stretched exponen-
tial. Several theories of the glass transition [16] give an
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FIG. 2 (color online). Time dependence of (a) the non-
Gaussian parameter �2 and (b) the percentage of the MSD
carried by the most mobile 5% particles. The maximum values
of both function increase with increasing density. Densities: 
 �
1, 2, 5, 7, 10, 12, 15, 17, and 20.
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FIG. 3 (color online). Apparent stretched-exponential behavior
of the intermediate scattering function. For 
 � 20, one can fit a
stretched exponential exp���t=����, with �  0:73 to the non-
ballistic decay of Fs�q; t� (see inset). However, the apparent
quality of the fit is misleading. A more careful analysis shows
that no single stretched-exponential function fits the observed
decay. As an illustration, a few local estimates of the exponent �
are indicated in the figure.
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explicit prediction for the time dependence of the stretch-
ing exponent � very similar to Fig. 4. Unfortunately, the
theoretical results are rarely presented in this way. Yet,
even though � itself is not well defined, it is still possible to
study the dependence of the effective stretching exponent
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FIG. 4 (color online). The exponent of a local stretched-
exponential fit for intermediate scattering function (see text).
The description of Fs�q; t� by a stretched exponential would only
be meaningful if � would be constant over at least one decade in
time. This is not the case. The data shown in the figure were
obtained at a reduced density 
 � 20 and q vectors between
0:8� and 2� (in units L�1). Similar plots at other densities show
the same trend.
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on density and wave vector. In our simulations, we find
that, at fixed real (i.e., unscaled) time, �eff appears inde-
pendent of the wave vector q, but it does depend on the
density.

The behavior of Fs�q; t� at shorter times is also interest-
ing. By plotting Fs�q; t� as a function of t=��, we can
collapse the long-time behavior at all densities onto a
single master curve (see Fig. 5). We define �� as the time
at which Fs�q; t� � 1=e. For the highest densities (
 � 22
and 27), the small-q components of Fs�q; t� do not decay to
1=e within the simulation time. In that case, we estimate ��
by optimizing the collapse on the master curve. We stress
that this time-density scaling [17] of Fs�q; t� is highly
nontrivial. Götze has argued that it is one of the outstand-
ing characteristics of MCT [3]. Yet, in the present case,
standard MCT cannot apply. In Fig. 5 the collapse onto the
master curve occurs sooner at higher densities. Note that
this master curve has no short-time plateau. The absence of
a short-time plateau is not surprising, as the ballistic re-
gime ends when a particle hits the wall of its confining
cage. The higher the density, the earlier the ballistic regime
ends. Using the fact that the cage radius scales as 1=
, we
expect the master curve to behave at short times as
expf�c=�ln2�t=����g, which approaches smoothly to 1 as
t=�� ! 0. This is indeed the behavior found (see inset of
Fig. 5). On the time scales where non-Gaussian effects are
most pronounced, a small fraction of the particles are
responsible for most of the MSD. Figure 6 shows a typical
snapshot of the 5% particles that were most mobile in a
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FIG. 5 (color online). Intermediate scattering function as a
function of t=��, where �� is the time constants of the long-
time (‘‘�’’) decay of Fs�q; t�. The figure shows that, with
increasing density, the Fs�q; t� tend to collapse onto a single
master curve. This master curve exhibits no plateau and decays
exponentially for t=�� � 1. Inset: Short-time decay of Fs�q; t�
including a fit to the functional form Fs�q; t� �
expf�c=�ln2�t=����g, with c  1:647. Simulations at densities

 � 5, 7, 10, 12, 15, 17, 20, 22, and 27.
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FIG. 6 (color online). This snapshot shows the location of the
5% most mobile particles in a system of 4096 particles at a
reduced density 
 � 20. The mobile particles are represented by
cones. The cone base is centered around the initial particle
position and the cone orientation gives the direction of displace-
ment. For clarity, the displacements have been multiplied by 2.
The figure shows that the most mobile particles are distributed
very inhomogeneously over the simulation box.
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given time interval. The length of this time interval was
chosen equal to the time at which the non-Gaussian be-
havior peaks. The figure shows that there are large empty
spaces in the figure which are occupied by the immobile
particles. On average, the displacements of the mobile
particles are correlated. The picture shows clearly that
clusters of mobile particles span the entire system (N �
4096). Much larger systems would be needed to make a
systematic study of the shape and distribution of the dy-
namical heterogeneities.

In summary, structural arrest in an ideal gas is due to the
increasing importance of topological constraints. The ex-
ponential density dependence of the diffusion coefficient
suggests that the particle mobility is facilitated by the
spontaneous appearance of ‘‘cavities’’ where the topologi-
cal constraints on the motion of a particle are temporarily
released. As in strong glasses, there is no sharp glass
transition. At high densities, the system becomes dynami-
cally heterogeneous and strong non-Gaussian effects in the
particle displacements show up. For 
 � 1, the functions
Fs�q; t=t�� for a given q all collapse onto a single master
curve, independent of 
. A parameter-free theoretical pre-
13570
diction of this observation would be desirable and, in view
of the simplicity of the model, probably feasible.
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