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Hydrogen-Bond Topology and the Ice VII=VIII and Ice Ih=XI
Proton-Ordering Phase Transitions
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The existence of an ice Ih=XI proton-ordering transition to a low-temperature ferroelectric phase has
sparked considerable debate in the literature. Electronic density functional theory calculations, extended
using graph invariants, confirm that a transition to a low-temperature ferroelectric phase should occur. The
predicted transition at 98 K is in qualitative agreement with the observed transition at 72 K, and the low-
temperature phase is the ferroelectric phase determined in diffraction experiments. The theoretical
methods used to predict the phase transition are validated by comparing their prediction to the well-
characterized ice VII=VIII proton-ordering transition.
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FIG. 1 (color online). Two possible arrangements of H bonds
within a 16-water unit cell of ice Ih. The possible H-bond
isomers are summarized mathematically by directed graphs in
which directional bonds point from H-bond donor to H-bond
acceptor, as illustrated for an isomer (b).
In 1935 Pauling [1] estimated there are �3=2�N different
ways to arrange the hydrogen bonds (H bonds) of N water
molecules in an ice-Ih lattice, ‘‘ordinary ice,’’ as illustrated
in Fig. 1. Pauling’s estimate proved to be remarkably
accurate, the exact result [2] being �1:5069�N . In the fol-
lowing year, Giauque and Stout measured the entropy of
ice Ih at 0 K to be NkB ln

3
2 within experimental error [3],

implying that somewhere between 0 �C and 0 K ordinary
ice becomes a proton glass with a quenched, nearly ran-
dom, arrangement of H bonds. Since that time there has
been continued research and debate as to whether the
H-bond arrangements are indeed completely random and
whether there lurks a phase transition to a fully proton-
ordered form of ice Ih. Recently, ‘‘spin ice’’ materials have
been found in which magnetic moments obey the same
configurational constraints as H bonds in ice and exhibit a
similar NkB ln

3
2 residual entropy [4]. Similar issues con-

cerning phase transitions to fully ordered structures arise
for spin ices, and our graph invariant method [5,6] of
harnessing electronic density functional theory (DFT)
techniques to formulate an accurate statistical mechanical
treatment of H-bond fluctuations may well find application
in this area.

There is a calorimetric signature of a first-order phase
transition in KOH-doped ice Ih, weakly dependent on
KOH concentration and tending toward 72 K in the limit
of vanishing impurity concentration [7,8]. Presumably
hydroxide ions catalyze H-bond rearrangement and en-
able approach to equilibrium. Neutron scattering [9–12]
and thermal depolarization experiments [13,14] on
KOH-doped ice Ih suggest that the proton-ordered form
of ice Ih, known as ice XI, is an orthorhombic ferroelectric
crystal. This view has been contested. Lately, Iedema et al.
[15] referred to more recent claims as ‘‘UFI citings (under-
identified ferroelectric ices) in the literature.’’
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In contrast, the ice VII=VIII proton-ordering transition is
well characterized and serves as a test case for our theo-
retical methods. The ice VII=VIII structure consists of two
interpenetrating ice Ic lattices. Over a range of pressures
from 2.1 to 12 GPa, proton ordering via H-bond rearrange-
ments occurs at nearly constant temperature, variously
reported [16,17] from 263 to 273 K. With still higher
pressure, the ice VII=VIII transition temperature abruptly
decreases as the mechanism of the transition shifts to
proton tunneling across the shortened H bonds. Our calcu-
lations are pertinent to the temperature independent region.

In this work we show that electronic density functional
theory gives a robust description of the energetics of the
H-bond isomers and, coupled with an analytic method we
have developed [5,6], provides new insight into proton
ordering in ice. These techniques are validated for the ice
VII=VIII transition and then applied to the Ih=XI transi-
tion. Prediction of H-bond ordering in ice encounters sev-
eral obstacles. Buch, Sandler, and Sadlej [18] showed that
empirical potentials disagree among each other with regard
to the subtle energetic ordering of the H-bond isomers in
ice Ih and differed by an order of magnitude with respect to
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the range of energy differences. None of the empirical
potentials predicted the ground state to be the Cmc21
crystal structure suggested by diffraction data, including
a potential they constructed with that hope in mind. We
overcome this problem through electronic DFT calcula-
tions. Then, we solve the problem of statistical sampling of
H-bond configurations by linking energy to hydrogen-bond
topology using graph invariants [5,6], combinations of
H-bond variables which are invariant to space group sym-
metry operations that are appropriate variables for describ-
ing scalar physical properties. Graph invariants provide a
means to ‘‘bootstrap’’ from expensive DFT calculations for
smaller unit cells to statistical mechanical simulations
using a larger unit cell.

The H-bond network is summarized mathematically by
oriented graphs, vertices connected by directed lines
(Fig. 1). The direction of the ith H bond in the ice lattice
is specified by a bond variable bi which takes values �1
according to whether the bond points along or opposite to a
canonical direction for that bond. If a scalar physical
property, such as the energy, can be predicted on the basis
of the H-bond topology, it must depend on the bond
variables in combinations which are invariant to symmetry
operations g
 of the space group [5,6]. These combinations
are generated by the action of the projection operator for
the totally symmetric representation on bond variables Ii /P


g
�bi� (first-order invariants), products of two bond
variables Iij /

P

g
�bibj� (second-order invariants), and

so on. Assuming the simplest linear dependence, the en-
ergy is written as

E�b1; b2; . . .� � E0 �
X

r


rIr �
X

rs


rsIrs � � � � ; (1)

with the overall constant E0 and the 
 coefficients to be
determined either by comparison with experiment, or as we
do in this work, by first-principles calculation. In a boot-
strap strategy, we perform expensive electronic structure
calculations on relatively small unit cells to determine the

 coefficients and then evaluate expression (1) for the
many H-bond isomers of a larger unit cell to generate a
statistical average. Technical aspects of generating graph
invariants for periodic lattices have been addressed else-
where [5]. For systems possessing sufficient symmetry the
first-order invariants are identically zero, and second-order
invariants provide the leading order link between H-bond
topology and physical properties.

We have already demonstrated [6] how graphical tech-
niques can be used to understand and predict physical
properties of water clusters. Long ago, Bjerrum [19] sug-
gested that H bonds in ice break into two categories,
depending on whether the nonhydrogen bonded hydrogens
are in a trans or cis arrangement, that is, whether they fall
on opposite or the same sides of the H bond. Examples of
waters in trans and cis arrangements are indicated in Fig. 1.
The number of trans bonds is actually an example of an
13570
invariant. The presumed dominance of pairwise inter-
actions has led to proposals that ice structures with the
highest fraction of trans H bonds are most stable [19], a
notion that, if correct, would conflict with the proposed
ferroelectric structure of ice XI in which three-quarters of
the H bonds are cis. Nevertheless, the cis or trans example
does serve to illustrate how a graph invariant can be used to
extrapolate from electronic structure calculations for small
unit cells to the large unit cells needed for statistical
simulations: The cis or trans energy difference is a parame-
ter that can be determined from rather small unit cells [20].
If the relative number of cis and trans H bonds did control
the energy, then the energy of the myriad H-bond arrange-
ments of a large cell would be known by counting the
relative number of cis and trans H bonds in each of those
configurations. Our results indicate there are other impor-
tant features, described by further invariants, which link
scalar physical properties to H-bond topology in ice. The
use of graph invariants provides a means to generate the
full set of topological parameters in the form of invariant
polynomials of bond variables br, and organizing them in a
hierarchy of increasingly accurate approximations [5,6]. In
this work we retain only the leading order, that is, second-
order invariants, which will be seen to provide an accurate
description of the H-bond energetics of larger ice unit cells.

Our study of the ice VII=VIII transition begins with the
16-water unit cell of ice VII, 2 primitive unit cells on each
side. Periodic DFT calculations were performed using the
Car-Parrinello [21] method [Becke-Lee-Yang-Parr (BLYP)
functional, � point used to sample the Brillouin zone] on
all 52 possible, symmetry-distinct H-bond isomers pos-
sible in this unit cell, enumerated using previously de-
scribed methods [6,22,23]. The dependence of energy on
H-bond topology was well captured by an expression of the
form of Eq. (1) using only second-order invariants, qua-
dratic polynomials in the bond variables br. A good fit
required only those second-order invariants in which the
terms brbs involve bonds that either had a vertex in com-
mon or were separated by a single bond. This left three
graph invariants plus an overall constant [3 
 coefficients
plus E0 in Eq. (1)] to describe the energy of the 52 isomers,
yielding the fit shown in Fig. 2(a). The energy actually
calculated for 30 randomly chosen isomers of a larger
32-water cell, measuring 2

���
2

p

 2

���
2

p

 2 primitive cells

on each side, is predicted well using invariant parameters
from the smaller 16-water cell in Fig. 2(b), indicating we
are nearing convergence of the graph invariant parameters
with respect to unit cell size. However, the calculated
energies systematically vary over a slightly wider range
than those predicted (‘‘bootstrapped’’) from the smaller
cell. This is actually not a consequence of requiring more
invariant parameters, but rather is due to more freedom for
configurational relaxation and greater effective k-point
sampling for the larger unit cell. The energies of the larger
cell were fit to the same invariant parameters as the smaller
1-2
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c) Ice-I 8- and 12-
water unit cells

d) Ice-I 48-water
unit cell

Ice-I 896-water simulation cell

a) Ice-VII 16-
water unit cell

b) Ice-VII 32-
water unit cell
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FIG. 2. (a) Graph invariant fit to the energies of the 52 H-bond
isomers of a 16-water unit cell of ice VII. (b) Calculated DFT
energy of H-bond isomers of a 32-water ice VII cell plotted
against energies predicted from graph invariant parameters de-
rived from the 16-water cell. (c) Graph invariant fit to the
energies of the 30 H-bond isomers of 8-water orthorhombic
and 12-water hexagonal unit cells of ice Ih. (d) Calculated
DFT energy of H-bond isomers of a 48-water ice-Ih cell plotted
against energies predicted from graph invariant parameters de-
rived from the smaller cell. The DFT energies in plots (a)–(d) are
calculated using the BLYP functional and the CPMD program.
The atomic positions are fully optimized within unit cells whose
size is fixed at the experimental value [24]. A line of slope unity
is shown to indicate where points would lie for perfect agree-
ment. (e) Average energy plotted as a function of temperature
from Metropolis Monte Carlo simulations [24] for large simu-
lation cells for ice Ih=XI (filled symbols) and ice VII=VIII (open
symbols). Data are presented for series of Metropolis
Monte Carlo runs ascending (�, 4) and descending (�, 5) in
temperature.
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cell, yielding a fit equal in quality to that shown in Fig. 2(a)
for the small cell. These improved invariant parameters
were then used to predict the energies of a 1024-water
statistical simulation cell. Metropolis Monte Carlo simu-
lations [24] were performed for the largest cell [Fig. 2(e)].
Assuming that the vibrational free energy of the isomers is
roughly the same, the Monte Carlo simulation yields a
prediction of a first-order ice VII=VIII phase transition at
228 K. The transition temperature is calculated as the point
of equal free energy between the two phases as determined
13570
by thermodynamic integration of the low-temperature
phase from 0 K and the high-temperature phase from
infinite temperature.

Despite the difficulties posed by small energy variation
among H-bond isomers, our results qualitatively match the
observed features of the ice VII=VIII phase transition in
several respects: (i) the calculated ground state is the
known ice-VIII antiferroelectric structure [23], (ii) the
transition temperature is similar to the experimental tran-
sition point measured in the range 263–273 K [16,17], and
(iii) there is a detectable partial ordering above the tran-
sition and a partial disordering below the transition. The
calculated entropy of the transition is 91% of the ideal
configurational entropy associated with H-bond disorder-
ing compared with experimentally reported values of 83%
for H2O and 91% for D2O [16].

Further validation is available from our calculations for
ice-Ih. We performed DFT calculations using three differ-
ent combinations of density functionals and basis sets for
two smaller unit cells of ice-Ih, an orthorhombic unit cell
containing 8 water molecules [20] (half of the unit cells
shown in Fig. 1) and a hexagonal cell with 12 waters. The
number of symmetry-distinct H-bond isomers consistent
with the ice rules and lattice periodicity is 16 and 14,
respectively [5]. The different density functionals, basis
sets, and programs, as detailed in the caption of Fig. 3 and
supplementary material [24], agree well when applied to
starting configurations, for which cell dimensions and
molecular geometries for each isomer are exactly the
same (solid curves in Fig. 3). Moreover, each method
yields the Cmc21 structure as the lowest energy isomer.
The isomers are arranged in order of increasing fraction of
trans H bonds in Fig. 3, and it is apparent that this feature
does not predict their relative energies. The dashed curves
in Fig. 3 report energies after various forms of geometry
optimization, determined by the capabilities of the elec-
tronic structure programs employed. For two of the meth-
ods, the atomic positions were optimized with cell
dimensions fixed. Those two cases are in very good agree-
ment. In the third method, the cell dimensions were opti-
mized as well and, as would be expected, this case deviates
further from the other two. The overall trends do not
depend on the choice of density functional or the optimi-
zation method. The lowest energy isomer is the Cmc21
structure in each case. Therefore, while current empirical
potentials do not give a reliable description of H-bond
energetics in ice, DFT calculations provide a robust
description.

The next stage is to fit Eq. (1) using the energies plotted
in Fig. 3. The procedure is very similar to the one applied to
the ice VII=VIII transition. The energies from small unit
cells are fit to three graph invariants plus a constant
[Fig. 2(c)]. These parameters are then tested by predicting
energies for a larger unit cell, here a 48-water hexagonal
cell, and comparing against new DFT calculations for the
1-3
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FIG. 3. Relative energy of H-bond isomers calculated by pe-
riodic electronic DFT methods for 16 isomers of an 8-water
orthorhombic unit cell (open symbols) and 14 isomers of a
12-water hexagonal unit cell (filled symbols) listed in order of
increasing fraction of trans H bonds. The bottom two graphs
(dotted lines) give the fraction of trans H bonds associated with
each isomer of the orthorhombic (�) and hexagonal (�) unit
cells. The energy was calculated [24] using (�, 
) the BLYP
functional, plane wave basis set and Troullier-Martins pseudo-
potentials with the CPMD program, (�, �) BLYP functional
using numerical basis sets with the DMOL program, or (�, 4)
the PW91 functional using plane wave basis with the CASTEP

program. Solid lines: energy of H-bond isomers before geometry
optimization. Dashed lines: energies after optimization of the
molecular coordinates, and for the CASTEP results cell dimen-
sions as well. The 12 energy data sets are plotted with their
average taken as the zero of energy to facilitate comparison of
the relative energies of the isomers. The 12 sets are broken into
four groups, according to the two unit cells and whether the
geometry is optimized or unoptimized. Successive groups of
three curves are shifted by 0:06 kcal=mol for clarity. The Cmc21
isomers for the orthorhombic and hexagonal cells are indicated.
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larger cell [Fig. 2(d)]. The predictions from the smaller cell
are close to the larger one, but, again, there is a system-
atic deviation resulting from more freedom for geometrical
relaxation and more effective k-point sampling. Parameters
obtained by fitting energies calculated for 63 isomers for
the 48-water cell are then used to predict the energetics of
an 896-water simulation cell. Average energy as a function
of temperature resulting from Monte Carlo simulations for
the simulation cell, shown in Fig. 2(e), indicates a transi-
tion to the low-temperature ferroelectric Cmc21 structure
at 98 K. The calculations indicate that as ice Ih is cooled, it
loses 11% of its configurational entropy before the tran-
sition (in agreement with pretransitional effects seen calo-
rimetrically [8] and in diffraction studies [12]), 88% at the
Ih=XI transition, and 1% as ice XI is cooled to 0 K.

After the existence of an ice Ih=XI transition to a low-
temperature ferroelectric phase has sparked considerable
debate, electronic DFT calculations, extended using graph
invariants confirm that a transition to a low-temperature
ferroelectric phase should occur. The predicted transition
at 98 K is in good agreement with the observed transition at
13570
72 K, and the low-temperature phase is the ferroelectric
phase determined in diffraction experiments.
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