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Random Delays and the Synchronization of Chaotic Maps
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We investigate the dynamics of an array of chaotic logistic maps coupled with random delay times. We
report that for adequate coupling strength the array is able to synchronize, in spite of the random delays.
Specifically, we find that the synchronized state is a homogeneous steady state, where the chaotic
dynamics of the individual maps is suppressed. This synchronization behavior is largely independent of
the connection topology and depends mainly on the average number of links per node. We carry out a
statistical linear stability analysis that confirms the numerical results and provides a better understanding
of the nontrivial roles of random delayed interactions.
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A system composed of many nonlinear interacting units
often forms a complex system with new emergent proper-
ties that are not held by the individual units. Such systems
describe a wide variety of phenomena in biology, physics,
and chemistry. The emergent property is usually synchro-
nous oscillations. Examples include the synchronized ac-
tivity in pacemaker heart cells, the circadian rhythms, the
flashing on and off in unison of populations of fireflies,
synchronized oscillations in laser arrays, in Josephson
junction arrays, etc. [1].

The effect of time-delayed interactions, which arise
from a realistic consideration of finite communication
times, is a key issue that has received considerable atten-
tion. The first systematic investigation of time-delayed
coupling was done by Schuster and Wagner [2], who
studied two coupled phase oscillators and found multi-
stability of synchronized solutions. Since then, delayed
interactions have been studied in the context of linear
systems [3], phase oscillators [4], limit-cycle oscillators
[5], coupled maps [6,7], neurons [8–10], and lasers [11].
Most studies have assumed that all the interactions occur
with the same delay (only a few have considered nonuni-
form delays [10,12–14]). However, actual delays in real
extended systems are not necessarily the same for all the
elements of the system; they might be distance dependent
or randomly distributed. In populations of spatially sepa-
rated neurons, the synaptic communications between them,
which depend on the propagation of action potentials over
appreciable distances, involve distributed delays. In com-
puter networks, random delays arise from queueing times
and propagation times.

While it is well known that oscillators which interact
with different delay times can synchronize (an example is
the synchrony arising in different neuronal groups of the
brain which might lead to both epilepsy and Parkinson’s
disease), the mechanism by which this synchrony arises
and the influence of the random communication times
remains poorly understood. The focus of this Letter is to
investigate the influence of such random delays in the
synchronization of a simple model of coupled chaotic
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oscillators. We consider an ensemble of logistic maps
and show that, in spite of the random delays, for adequate
coupling strength the array is able to synchronize.
Surprisingly, in the synchronized state the chaotic dynam-
ics of the individual maps is suppressed: the maps are in a
steady state, which is unstable for the uncoupled maps.
This is in sharp contrast with the cases of instantaneous and
fixed-delay coupling, as in those cases the dynamics of the
array is either periodic or chaotic. By studying the tran-
sition to steady-state synchronization as the randomness of
the delays increases we discover a scaling law that relates
the distance to synchronization with the randomness of the
delays. We also investigate the influence of the array
topology and find that steady-state synchronization de-
pends mainly on the average number of links per node
but not on the array architecture. This is also in contrast
with the instantaneous and fixed-delay cases, as in those
cases the synchronization depends on the connection to-
pology [7]. Finally, we present a statistical linear stability
analysis that demonstrates the stability of the solution
found numerically.

We consider the following ensemble of N coupled maps:

xi�t� 1� � �1� ��f�xi�t�� �
�
bi

XN
j�1

	ijf�xj�t� 
ij��:

(1)

Here t is a discrete time index, i is a discrete spatial
index (i � 1; . . . ; N), f�x� � ax�1� x� is the logistic map,
the matrix 	 � �	ij� defines the connectivity of the array:
	ij � 	ji � 1 if there is a link between the ith and jth
nodes, and zero otherwise. � is the coupling strength and

ij is the delay time in the interaction between the ith and
the jth nodes (the delay times 
ij and 
ji need not be
equal). The sum in Eq. (1) runs over the bi nodes which
are coupled to the ith node (bi �

P
j	ij). The normalized

prefactor 1=bi means that each map receives the same total
input from its neighbors.

First, we note that the homogeneous steady state xi�t� �
xj�t� � x0, 8 i; j; t, where x0 is a fixed point of the un-
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coupled map, x0 � f�x0�, is a solution of Eq. (1) regardless
of the delays and of the connectivity of the array.

Next, let us present some results of simulations that
show that this state, with x0 being the nontrivial fixed point,
x0 � 1� 1=a, can be a stable solution for adequate cou-
pling and random enough delays. The simulations were
done choosing an initial configuration, xi�0� random in
�0; 1�, and letting the array evolve initially without cou-
pling [in the first time interval 0< t <max�
ij�]. We
present results for a � 4, corresponding to fully developed
chaos of the individual maps, but we have found similar
results for other values of a. We illustrate our findings
using the small-world topology [15], but we have found
similar results for random and regular (K nearest-neighbor)
topologies [16], as discussed below.

With both, either randomly distributed or fixed-delay
times, if the coupling is large enough the array synchro-
nizes in a spatially homogeneous state: xi�t� � xj�t� 8 i; j.
Figures 1 and 2 display the transition to synchronization as
� increases. At each value of �, 100 iterates of an element
of the array are plotted after transients. To do the bifurca-
tion diagrams we varied only �; the connectivity of the
array (	ij), the delays (
ij), and the initial configuration
[xi�0�] are the same for all values of �. Figure 1(a) displays
results for delays that are exponentially distributed,
Fig. 1(b) for Gaussian distributed, Fig. 2(a) for zero delay,
and Fig. 2(b) for constant delays. It can be observed that for
small � the four bifurcation diagrams are similar; however,
for large � they differ drastically: xi is constant in Figs. 1(a)
and 1(b), xi � x0 � 1� 1=a, while xi varies within �0; 1�
in Figs. 2(a) and 2(b).

To characterize the transition to synchronization we use
the indicator �2 � 1=Nh

P
i�xi�t� � hxi�2it, where h� � �i
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FIG. 1. (a),(b) xi vs �; (c),(d) �2 vs �. In (a) and (c) the delays
are distributed exponentially [
0 � 0, c � 1:2 (see text)]; the
distribution is shown in (e). In (b) and (d) the delays are Gaussian
distributed [
0 � 3, c � 2 (see text)]; the distribution is shown
in (f). The inset of (c) shows with detail the transition to
synchronization: �2 decreases abruptly at �� 0:4, and is zero
for � > 0:8. N � 500, a � 4, and the characteristic parameter of
the small-world topology is p � 0:3 [15].
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denotes an average over the elements of the array and
h� � �it denotes an average over time. Figures 1(c), 1(d),
2(c), and 2(d) display �2 vs � for the bifurcation diagrams
discussed above. It can be observed that for large � there is
in-phase synchronization in the four cases [xi�t� � xj�t�
and �2 � 0]; however, we note that an inspection of the
time-dependent dynamics reveals that for randomly dis-
tributed delays the maps are in a steady state, while for
fixed delays the maps evolve either periodically or chaoti-
cally. It can also be observed that the four plots �2 vs � are
similar for small � [in Fig. 2(d) the array synchronizes also
in a window of small �; this occurs for odd delays and was
reported in [7] ].

Let us now investigate the transition from periodic or
chaotic synchronization (for fixed delays) to steady-state
synchronization (for random delays) by introducing a dis-
order parameter c that allows varying the delays from
constant to distributed values. Specifically we consider
the following points.

(i) 
ij � 
0 � Near�c��, where � is Gaussian distributed
with zero mean and standard deviation one [17]. The
delays are constant (
ij � 
0) for c � 0 and are Gaussian
distributed around 
0 for c � 0 [depending on 
0 and c the
distribution of delays has to be truncated to avoid negative
delays; see Fig. 1(f)].

(ii) 
ij � 
0 � Int�c��, where � is exponentially distrib-
uted, positive, with unit mean. The delays are constant
(
ij � 
0) for c � 0 and are exponentially distributed,
decaying from 
0 for c � 0.

Figure 3(a) displays the transition between the two
synchronization regimes as the randomness of the delays
increases. We plot �2 vs c for different delay time distri-
butions and � � 1. It can be observed that the array syn-
chronizes for c�0 but it desynchronizes as c increases
and the delays become different from each other. There
is a range of values of c such that the delays are not ran-
dom enough to induce steady-state synchronization; how-
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FIG. 2. (a),(b) xi vs �; (c),(d) �2 vs �. In (a),(c) 
ij � 0 8 i; j;
in (b),(d) 
ij � 3 8 i; j. All other parameters are as in Fig. 1.
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FIG. 4. (a) Synchronization region determined numerically:
black represents parameters where �2 < 10�7 for all the realiza-
tions of xi�0�, 	ij, and 
ij. (b) Synchronization region deter-
mined from the stability analysis: black represents parameters
where j�maxj< 1 for all the realizations of 	ij and 
ij. The
delays are Gaussian distributed with 
0 � 3, N � 100, and all
other parameters are as in Fig. 1.
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FIG. 3 (color online). (a) �2 vs c and (b) �2 vs c
. The delays
are Gaussian distributed with 
0 � 2 (�), 3 (4), 4 (5), 5 (�);
exponentially distributed with 
0 � 3 (�), 4 (+), 5 (*), 6 (�).
� � 1, all other parameters are as in Fig. 1.

PRL 94, 134102 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
8 APRIL 2005
ever, for c large enough the array synchronizes again and
�2 � 0.

To investigate this transition we considered a normalized
disorder parameter c
 � D
=h
i, where h
i is the average
delay and D
 is the standard deviation of the delay distri-
bution. By plotting �2 vs c
 [Figs. 3(b)] we uncover a
scaling law: as h
i increases the curves collapse into curves
of similar shapes, and the transition to steady-state syn-
chronization occurs for c
 � 0:5.

The value of the disorder parameter above which the
arrays synchronizes in the steady state depends on the
coupling strength. Figure 4(a) displays the synchronization
region in the parameter space ��; c�. To determine the
synchronization region we did simulations with different
initial conditions, array connectivities, and delay time
realizations: the black indicates parameters for which the
array synchronized in all the simulations, while the white
indicates parameters for which the array did not synchro-
nize in any of the simulations. The gray region in the
boundary of the synchronization region indicates that there
are some initial conditions and/or realizations of 	ij and 
ij
for which the array did not synchronize. Two different
synchronization regions can be clearly distinguished: for
c � 0 and for c > 0:5. The former corresponds to periodic
or chaotic synchronization for fixed delays, and the latter,
to steady-state synchronization for distributed delays.

Atay et al. [7] have recently shown that with fixed delays
the synchronization depends on the array architecture: with
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the same total number of links, a random network exhibits
better synchronization properties than a regular network.
We investigated this issue and found that with random
delays the synchronization depends mainly on the average
number of links per node, hbii, and is rather independent of
the architecture. Figure 5(a) displays the transition to
synchronization as � increases for small-world and regular
arrays with distributed delays, and for comparison,
Fig. 5(b) displays results for the same arrays with fixed
delays. It can be observed that for distributed delays the
transition to synchronization is independent of the array
topology; however, it depends on the connectivity: the
larger hbii, the lower the coupling strength needed to
synchronize. In contrast, for fixed delays the synchroniza-
tion depends not only on the connectivity but also on the
architecture: for large � the arrays that have small-world
topologies synchronize, but those that have regular top-
ologies do not, in agreement with the results of [7].

Finally, let us assess the stability of the steady-state
synchronized behavior found numerically by performing
a statistical linear stability analysis. The delayed map
Eq. (1) can be written in nondelayed form by the introduc-
tion of a set of auxiliary variables [14], yim�t� � xi�t�m�,
where 1 � i � N and 0 � m � M with M � max�
ij�. In
terms of these new N�M� 1� variables Eq. (1) becomes
yim�t� 1� �
�
yi;m�1�t� if m � 0;
�1� ��f�yi0�t�� �

PN
j�1 �ijf�yj;
ij�t�� if m � 0; (2)
where �ij � �	ij=bi. Next we define a vector of
N�M� 1� components containing information about the
present and past states of the array: Y��y10;y20; . . . ;
yN0;y11;y21; . . . ;yN1;. . . ;y1M;y2M; . . . ;yNM�. Equation (2)
can be rewritten as Yi�t� 1� � Fi�Y1�t� . . .�
YN�M�1��t�� and the synchronized state can be rewritten
as Y
 � �x0 . . . x0�: Linearizing the equations of motion
near Y
 gives �Yi�t� �

P
jfij�Yj�t�, where the matrix F �

�fij� can be cast as a set of �M� 1�2 blocks of dimension
N � N [18]. We calculated the eigenvalues of F for differ-
ent realizations of the connectivity and delay time distri-
butions. The results are displayed in Fig. 4(b), where the
black region indicates parameters where the maximum
eigenvalue of F, �max, has modulus less than 1 for all 
ij
and 	ij realizations, and the white region indicates parame-
ters where �max � 1 for all 
ij and 	ij realizations. A very
good agreement with the synchronization region deter-
mined numerically can be observed [the black region for
c � 0 observed in Fig. 4(a) does not appear in Fig. 4(b)
because in this region the synchronized dynamics is either
periodic or chaotic].

To summarize, we studied the dynamics of an ensemble
of chaotic maps which interact with random delay times
and found that the array synchronizes in a homogeneous
2-3
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FIG. 5 (color online). Influence of the array architecture and
connectivity. (a) Gaussian distributed delays (
0 � 3, c � 2) and
(b) fixed delays (
ij � 3 8 i; j). Small-world topology with and
an average of 10 links per node (�), 50 links per node (+);
regular topology with 10 links per node (*); 50 links per node
(4). All other parameters are as in Fig. 1.
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steady state. Our findings strongly resemble the so-called
‘‘amplitude (or oscillator) death’’ phenomenon, which re-
fers to the fact that under certain conditions the amplitude
of coupled oscillators shrinks to zero [19]. It has been
shown that delayed coupling enhances the parameter re-
gion where oscillation death occurs [5], and that distributed
delays are more stabilizing than fixed delays [13]. We think
that our results are also related to the recent work of
Ahlborn and Parlitz [20], who proposed a multiple delay
feedback control method for stabilizing unstable steady
states. Simulations of a single logistic map with several
self-feedback delayed terms [i.e., Eq. (1) with j � i] show
that if the delay times are different, the inclusion of five or
more feedback terms usually leads to chaos suppression
and the stabilization of the fixed point after transients (the
precise number of feedback terms needed to stabilize the
fixed point depends on the delay times; these results will be
reported elsewhere).

Our findings provide another example of the nontrivial
action of inhomogeneities and disorder, and we speculate
that they might yield light on explaining the stable opera-
tion of many complex systems composed by nonlinear
units which interact with each other with random commu-
nication times.
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