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Brane Worlds in Collision
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We obtain an exact solution of the supergravity equations of motion in which the four-dimensional
observed Universe is one of a number of colliding D3 branes in a Calabi-Yau background. The collision
results in the ten-dimensional spacetime splitting into disconnected regions, bounded by curvature
singularities. However, near the D3 branes the metric remains static during and after the collision. We
also obtain a general class of solutions representing p-brane collisions in arbitrary dimensions, including
one in which the universe ends with the mutual annihilation of a positive-tension and a negative-tension
3 brane.
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The idea that our spacetime is a brane in a higher-
dimensional world leads naturally to the suggestion that
the big bang is the result of a brane collision [1,2].
Colliding brane-world scenarios offer an alternative to
conventional four-dimensional cosmological models, and
an important challenge is to make predictions that distin-
guish between intrinsically higher-dimensional effects and
conventional lower-dimensional physics. In order to do so,
a better understanding of brane-brane interactions is
needed. Studies of D3-D3 and D3-D3 collisions have so
far been restricted to approximations based on effective
field theories on the brane, or on perturbative string-theory
techniques [3,4]. There have been no exact treatments
based on the supergravity equations of motion. The pur-
pose of this letter is to provide an exact treatment in the
case of colliding D3 branes, moving in a Calabi-Yau
background. Our technique extends to more general
brane-collision processes, which we shall also discuss
briefly. It requires an extension to p branes of an analysis
of black-hole collisions developed in [5,6], which made
use of a remarkable time-dependent generalization [5] of
the static Majumdar-Papapetrou metrics [7]. The collision
of extreme Reissner-Nordström black holes had been dis-
cussed previously using a modulus-space description [8,9].
The importance of the work of [6] was that at the expense
of introducing a cosmological term, the dynamics could be
studied exactly.

The Kastor-Traschen solution [5] of Einstein-Maxwell
theory with cosmological constant �> 0 takes the form

ds24 � �H�2dt2 �H2dy2; A � H�1dt;

H � ht���y�; ��y� �
X
k

Mk

jy � ykj
;

(1)

where h � �
���������
�=3

p
. Note that if the masses Mk are set to

zero, the solution is de Sitter spacetime, and the apparent
singularity at t � 0 is a mere coordinate artifact. (It corre-
sponds to a null hypersurface separating the maximally
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extended de Sitter spacetime into two antipodally related
parts, with t > 0 and t < 0. In fact, the involution t ! �t is
the antipodal map.)

When t is negative, the surfaces t � constant are every-
where spacelike. Near each yk, there is an infinite throat
which is very similar to the throat of the asymptotically flat
extremal Reissner-Nordström solution, for which H � 1�
��y�. Far from the throats, however, there is a contracting
k � 0 de Sitter universe ds24 	�d�2 � a2���dy2, with
a��� � e�h� � ht, and � going to �1.

When t is positive, however, one cannot go too far away
from the throats before the function H becomes negative.
In fact, the time-dependent locus H � 0 is a spacetime
singularity. In [6], a detailed discussion is given of the
locations of the horizons that form around the black holes.
The simplest case to consider would be that of two black
holes, of masses M1 and M2, with M � M1 �M2 <
1
4 jhj

�1. This represents the head-on collision of two black
holes. As t approaches zero, one has two outer apparent
horizons which ultimately coalesce, and a single time-
independent Reissner–Nordström–de Sitter black hole is
formed at late times [6].

After the appearance of [5], Maki and Shiraishi obtained
a general class of time-dependent multiparticle charged
solutions [10], coupled to a scalar field �. In general, the
scalar field couples to the cosmological constant in
Liouville-like fashion. Some four-dimensional examples
were analyzed in [11]. In some cases the cosmological
constant can be set to zero. The modulus-space metrics
for these multiparticle solutions were given in [12]. The
slow motion of Neveu-Schwarz–Neveu-Schwarz 5 branes
was discussed in [13]. In [14], a particular case was used to
study an expanding gas of D0 branes, allowing a compari-
son of the modulus-space approximation with the exact
solution of [10].

In order to discuss brane scattering, we shall lift some of
the Maki-Shiraishi solutions to higher dimensions. Their
Lagrangian in �N � 1� dimensions is
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L � R�
4

N � 1
�@��2 � e�4a�=�N�1�F2 ��e4b�=�N�1�:

(2)

We restrict attention to solutions described by Case (II) in
[10], for which

ds2 � �V�2�N�2�=�N�2�a2�dt2 � a2�t�V2=�N�2�a2�dy2;

A � �

������������������������������
N � 1

2�N � 2� a2�

s
1����

C
p

�a�t�
a
2 V

�1dt;

e�4a�=�N�1� � C�a�t�
2a
2
V2a2=�N�2�a2�;

(3)

where

V � 1�
X
k

�k����
C

p
�a�t�
N�2�a2�N � 2�jy � ykjN�2

;

a�t� �
�
t
t0

�
1=a2

;
N

a2
� 1 �

a2t20�
C�N � 1�

:

(4)

By contrast with the Kastor-Traschen case, the presence
of the scalar field allows us to take � � 0, by choosing
a2 � N. In the notation of [15], this coupling strength of
the dilaton to the Maxwell field is characterized by the
constant 	 taking the value 4. In fact 	 � 4 is precisely the
coupling that one encounters, in any dimension, for a
Maxwell field arising from the Kaluza-Klein vector in a
circle reduction [15]. It is also the coupling strength for any
field strength in maximal supergravity in any dimension
[15,16]. Thus, for example, if N � 9 the vector field is the
Ramond-Ramond vector of type IIA string theory, which
may also be interpreted as arising from M-theory via
Kaluza-Klein reduction [14].

To construct colliding D3 branes we require N � 6, and
the Maxwell field strength may be viewed as arising from
the 5 form of type IIB supergravity. Lifting the solution
from seven to ten dimensions, we obtain a time-dependent
D3-brane solution, in which the only nontrivial fields are
the metric and the 5 form, given by

ds210 � H�1=2��dt2 � dx2� �H1=2dy2;

F�5� � dt ^ d3x ^ dH�1 � ��dt ^ d3x ^ dH�1�;

H � ht���y�; ��y� �
X
k

Mk

jy � ykj4
;

(5)

where h is an arbitrary constant (which we shall take to be
negative, to parallel the discussion in [6]). Sending t !
t� 1=h one gets a standard supersymmetric static
D3 brane if h � 0. However, the time-dependent h � 0
solution is nonsupersymmetric.

If the non-negative constants Mk, which correspond to
the 3-brane charges, all vanish, then we obtain a vacuum
solution of the Einstein equations, which is a generaliza-
tion of the familiar Kasner solution,
13160
ds210 � �ht��1=2��dt2 � dx2�2 � �ht�1=2dy2

� �d�2 �
2

h�
dx2 �

1

2
h�dy2; (6)

where we have defined � � 2
�������
t=h

p
. The singularity at t �

0 is, by contrast with the de Sitter case, a true curvature
singularity, and the Kasner metric cannot be continued
from negative to positive t. In the ten-dimensional metric
the three spatial dimensions are increasing in size as t
increases towards zero from an initial negative value.
From the point of view of four dimensions, the interpreta-
tion is simplest in the Einstein conformal gauge, which is
achieved by writing

ds210 � e2�’ds24 � e�6�’dy2; (7)

where �2 � 3=16. Introducing the Einstein proper-time
coordinate T � 2

3 �ht
3�1=2, the four-dimensional Einstein-

frame metric becomes

ds24 � �dT2 �

�
3

2
hT

�
2=3

dx2: (8)

This is of the form expected for gravity coupled to a
massless scalar field, which behaves like a perfect fluid
with a stiff-matter equation of state for which the energy
density equals the pressure. In the Einstein conformal
gauge, the spatial 3 sections contract as T increases to-
wards zero from an initial negative value; T � 0 is a big-
crunch singularity. If instead we run time backwards, the
solution represents an expanding universe with a big-bang
singularity. The discussion above emphasizes the point that
four-dimensional physics should be analyzed in the
Einstein conformal frame.

Now let us consider the case where the constants Mk are
nonzero. Starting with t negative but increasing towards
zero, the solution represents 3 branes moving in a back-
ground Kasner universe, in which, measured in the ten-
dimensional metric, the transverse space contracts while
the D3-brane-world volume expands. From the point of
view of four dimensions, the situation is similar to the pure
Kasner case discussed above, as long as one stays well
away from all of the D3 branes, because the relevant
conformal factor is

e�2�’ � �ht�3=2
�
1�

1

ht

X
k

Mk

jy � ykj4

�
3=2

: (9)

At any fixed negative t the surfaces of constant time are
smooth, asymptotically flat and noncompact. Near each
3 brane, y 	 yk; the 10 metric is static and well-
approximated by the product metric on AdS5 � S5.
Because the transverse directions are inhomogeneous, the
four-dimensional interpretation depends upon where one is
in the transverse space.

The situation as t goes to zero is more complicated than
in the pure Kasner case. If t is exactly zero, we obtain a
nonsingular ten-dimensional configuration that is not
asymptotically flat, which may be thought of as a union
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of AdS5 � S5 components. An analogous solution has been
discussed for AdS2 � S2 in [17–19], in connection with
anti–de Sitter fragmentation.

If the charges Mk are nonzero the solution continues to
exist in a neighborhood of each 3 brane when t becomes
positive, by contrast with the Kasner solution. Specifically,
the metric is

ds210 � ��ht��1=2
�
��y�
��ht�

� 1
�
�1=2

��dt2 � dx2�

� ��ht�1=2
�
��y�
��ht�

� 1
�
1=2

dy2; (10)

where ��y� is given in (5). For all positive times, the metric
exists inside a domain Dt bounded by the level set ��y� �
�ht. Inside the domain Dt, but away from the D3 branes
themselves, the transverse dimensions expand while the
three spatial dimensions contract even with respect to the
four-dimensional Einstein-frame metric, if one stays at
fixed y. However, if one moves in the transverse space in
such a way that ��y�=��ht� remains approximately con-
stant (and greater than 1), then the corresponding four-
dimensional universe has expanding spatial sections.

At small positive t, the domain Dt is a large connected
ball containing all the D3 branes. As t increases, the
domain Dt shrinks, and eventually splits into disconnected
pieces which shrink down onto each mass point. In other
words, the universe splits into disconnected regions con-
taining the individual D3 branes. Near each D3 brane,
however, the metric is static, and again well approximated
by the product metric on AdS5 � S5.

Consider, for example, the case of two mass points,
which is illustrated in Fig. 1. At negative times the
D3 branes are approaching one another in a head-on col-
lision, with the Universe contracting about them. The
D3 branes never actually meet, but rather scatter off each
other into a universe bounded by spacetime singularities.
FIG. 1. The level sets of ��y� for two mass points: The
universe after the collision is confined inside a level set ��y�>
�ht. As time progresses, the level set @Dt shrinks and splits into
two components, which then shrink around the two D3 branes.
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In the solutions we have discussed so far, the six-
dimensional transverse space is flat. In more realistic ex-
amples one might want to consider D3 branes moving in a
Calabi-Yau manifold. In fact, the solutions given by (5)
may be generalized to the case where the flat transverse
metric dy2 is replaced by any Ricci-flat 6 metric, and H �
ht���y� where ��y� is any harmonic function on the
Ricci-flat 6 manifold. In particular, we can take the Ricci-
flat manifold to be a Calabi-Yau manifold.

The time-dependent D3-brane solutions that we ob-
tained above admit a straightforward generalization to
the case of an arbitrary p brane supported by a �p�
2�-form field strength with a dilaton coupling characterized
by 	 � 4 in the notation of [15]. The relevant
D-dimensional Lagrangian can be expressed as

L � R�
1

2
�@��2 �

1

2�p� 2�!
ec�F2

�p�2�; (11)

where

c2 � 	�
2�p� 1��D� p� 3�

D� 2

� 4�
2�p� 1��D� p� 3�

D� 2
: (12)

The time-dependent p-brane solution is given by

ds2 � H��D�p�3�=�D�2���dt2 � dx2�

�H�p�1�=�D�2�gmn�y�dy
mdyn;

F�p�2� � dt ^ dpx ^ dH�1; � �
1

2
c logH;

H � ht���y�;

(13)

and h is an arbitrary constant. Here gmn�y�dymdyn is any
Ricci-flat �D� p� 1� metric, and ��y� is an harmonic
function in this metric. One might, for example, take the
flat metric gmn�y�dy

mdyn � dy2 and ��y� �
P

kMk=jy �
ykjD�p�3.

These solutions can be derived by lifting the Case (II)
time-dependent Maki-Shiraishi solutions [10], setting
a2 � N so that 	 � 4. Alternatively, they can be derived
by using T-duality symmetries to relate them to pp waves.
We begin by noting that the pp-wave metric

ds2 � 2dx�dx� �
4

�2hx��2
��y��dx��2 � gmn�y�dymdyn

(14)

is Ricci flat for any ��y� that is harmonic in the Ricci-flat
metric gmn�y�dymdyn. It is invariant under the boost given
by x� ! &x�, x� ! &�1x�. We may therefore perform a
Kaluza-Klein reduction on this boost symmetry by first
introducing coordinates �t; z�, given by x� � te�1=2�hz and
x� � ��2=h�e��1=2�hz. This gives

ds2��Hdt2�H�dz�H�1dt�2�gmn�y�dy
mdyn; (15)

with H � ht���y�. Reducing on the boost Killing vector
2-3
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@=@z gives a time-dependent 0 brane. If one is starting
from D � 11 supergravity, this gives the D0 brane that was
discussed in [14], which is the special case N � 9 � a2 of
Maki and Shiraishi.

By performing a sequence of T-duality transformations
in the standard way (see, for example, [20]), this immedi-
ately gives us all the time-dependent p-brane solutions that
we have presented above. A further extension is to consider
harmonic intersecting p branes. It is straightforward to see
that any one (but only one) of the harmonic functions can
be generalized from 1���y� to ht���y�.

A further generalization is to apply a discrete electric-
magnetic duality transformation in four dimensions.
Consider, for example, the metric representing a maxi-
mally electrically charged Kaluza-Klein black hole:

ds24 � �H�1=2dt2 �H1=2dy2; F � �dt ^ dH�1;

� �
1

2

���
3

p
logH; (16)

with H � ht���y�. After making the duality transforma-
tion we obtain the magnetic solution, with the same metric
and with

F � dA � �3d�; � � �
1

2

���
3

p
logH; (17)

where �3 denotes the Hodge dual in the flat 3 metric dy2.
Lifting to five dimensions, we obtain the Ricci-flat metric

ds25 � �dt2 �Hdy2 �H�1�dz� A�2: (18)

The last two terms in (18) give a time-dependent sequence
of hyper-Kähler 4 metrics. The interpretation of the metric
(16) is that it represents an assembly of freely-expanding
point particles in a background Friedman universe with a
scale factor a�T� proportional to T1=3. In the slow-motion
approximation the motion is free and hence the branes
separate linearly with time [21].

It would be of great interest to study the stability of
Hořava-Witten brane models by finding exact time-
dependent solutions; some preliminary results are reported
in [22]. Here, we present a different colliding brane-world
model, which however captures the essence of all brane-
world instabilities. We take ��y� � Mjy1j in (5), and
reduce on �y2; . . . ; y6�, obtaining the 5 metric

ds25 � ��ht�Mjy1j�1=3��dt2 � dx2�

� �ht�Mjy1j�
4=3dy21; (19)

which describes a negative-tension time-dependent 3 brane
at y1 � 0, supported by a 5 form. If the solution is reflected
about y1 � L, and if y1 � 2L is identified with y1 � 0, we
obtain an S1=Z2 orientifold with an additional positive-
tension brane at y1 � L. The proper distance between the
3 branes is 6��ht�ML�5=3 � �ht�5=3
=�5M�. This de-
creases monotonically as t increases to 0. Defining T �
13160
2�ht�ML�3=2=�3h�, the Einstein metric induced on the
positive-tension brane is of the Friedman-Lemaitre form
(8), driven by a massless scalar field, i.e., the radion. At
t � 0 a singularity forms on the negative-tension brane,
and moves towards the positive-tension brane, causing the
complete annihilation of the universe at t � ML=��h�,
i.e., T � 0. This is the way the brane-world ends, not
with a whimper but a bang.

Research is supported in part by DOE grant no. DE-
FG03-95ER40917. G. W. G. is grateful to Indrajit Mitra for
helpful discussions, and to the George P. & Cynthia W.
Mitchell Institute for Fundamental Physics for hospitality
during the course of this work.
2-4
[1] G. R. Dvali and S. H. H. Tye, Phys. Lett. B 450, 72 (1999).
[2] J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok,

Phys. Rev. D 64, 123522 (2001).
[3] N. Turok, M. J. Perry, and P. J. Steinhardt, Phys. Rev. D 70,

106004 (2004).
[4] L. McAllister and I. Mitra, J. High Energy Phys. 02 (2005)

019.
[5] D. Kastor and J. H. Traschen, Phys. Rev. D 47, 5370

(1993).
[6] D. R. Brill, G. T. Horowitz, D. Kastor, and J. H. Traschen,

Phys. Rev. D 49, 840 (1994).
[7] S. D. Majumdar, Phys. Rev. 72, 390 (1947); A.

Papapetrou, Proc. R. Ir. Acad., A Math. Phys. Sci. A51,
191 (1947).

[8] G. W. Gibbons and P. J. Ruback, Phys. Rev. Lett. 57, 1492
(1986).

[9] R. C. Ferrell and D. M. Eardley, Phys. Rev. Lett. 59, 1617
(1987).

[10] T. Maki and K. Shiraishi, Classical Quantum Gravity 10,
2171 (1993).

[11] J. H. Horne and G. T. Horowitz, Phys. Rev. D 48, R5457
(1993).

[12] K. Shiraishi, Nucl. Phys. B 402, 399 (1993).
[13] A. G. Felce and T. M. Samols, Phys. Lett. B 308, 30

(1993).
[14] D. Z. Freedman, G. W. Gibbons, and M. Schnabl, in The

New Cosmology, edited by R. E. Allen, D. V. Nanopoulos,
and C. N. Pope, AIP Conf. Proc. No. 743, (AIP, New York,
2004),
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