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Gravitational-Wave Emission from Rotating Gravitational Collapse in Three Dimensions
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We present the first three-dimensional (3D) calculations of the gravitational-wave emission in the
collapse of uniformly rotating stars to black holes. The initial models are polytropes which are
dynamically unstable and near the mass-shedding limit. The waveforms have been extracted using a
gauge-invariant approach and reflect the properties of both the initial stellar models and of newly
produced black holes, being in good qualitative agreement with those computed in previous 2D
simulations. The wave amplitudes, however, are about 1 order of magnitude smaller, giving, for a source
at 10 kpc, a signal-to-noise ratio S=N � 0:25 for LIGO-VIRGO and S=N & 4 for LIGO II.
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The study of the gravitational collapse of rotating stars
to black holes is a cornerstone of any theory of gravity and
a long-standing problem in general relativity. Over the
years, numerous approaches have been applied and several
different techniques developed to tackle this problem
which is not just academic. Indeed, important issues in
relativistic astrophysics awaiting clarification, such as the
mechanism responsible for �-ray bursts, may be unveiled
with a more detailed understanding of the physics of
gravitational collapse in rotating and magnetized stars.
Furthermore, the study of gravitational collapse will pro-
vide the waveforms and the energetics of one of the most
important sources of gravitational radiation.

In the absence of symmetries, no analytic solutions
are known that describe gravitational collapse to a black
hole, and it is through numerical relativity simulations
that one can hope to improve our knowledge of this pro-
cess under realistic conditions. However, the modeling of
black hole spacetimes with collapsing matter sources in
multidimensions is one of the most formidable efforts of
numerical relativity. This is due both to the inherent diffi-
culties and complexities of the system of equations to be
solved and to the vast computational resources needed in
three-dimensional evolutions.

In addition to the technical difficulties due to the accu-
rate treatment of the hydrodynamics involved in the col-
lapse, the precise calculation of the gravitational radiation
emitted in the process is particularly challenging as the
energy released in gravitational waves is much smaller
than the total rest-mass energy of the system. Indications
of the difficulties inherent to the problem of calculating the
gravitational-wave emission in rotating gravitational col-
lapse have emerged in the first and only work, which dates
back almost 20 years [1]. In 1985, in a landmark work in
numerical relativity, Stark and Piran used their axisymmet-
ric general-relativistic code to evolve rotating configura-
tions and to compute the gravitational radiation produced
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by their collapse to black holes. The results referred to
initial configurations consisting of polytropic stars which
underwent collapse after the pressure was reduced by a
factor ranging from 60% up to 99% for the rapidly rotat-
ing models. The initial data effectively consisted of spheri-
cally symmetric solutions with a uniform rotation simply
‘‘added’’ on. Not being stationary solutions of the Einstein
equations, these stars could reach dimensionless spins up
to a � J=M2 � 0:94, with J andM the angular momentum
and mass of the star, respectively.

Overall, their investigation revealed that while the na-
ture of the collapse depended on the parameter a, the
form of the waves remained roughly the same over the
entire range of the values of a, with the amplitude increas-
ing with a. Particularly important was evidence that, de-
spite the complex matter dynamics during the collapse, the
gravitational-wave emission could essentially be related to
the oscillations of a perturbed black hole spacetime.

In recent years many studies have extended to three
spatial dimensions the investigation of gravitational col-
lapse to black holes [2–4]. Despite the improvements in
the evolution of the hydrodynamics and of the spacetime
achieved by these simulations, none of them has addressed
the problem of the gravitational-wave emission. The rea-
son for this can be found in the small amplitude of the
signal, often below the truncation error of the 3D simula-
tions, but most importantly in the fact that all of the above
calculations made use of Cartesian grids with uniform
spacing. With the computational resources currently avail-
able, this choice places the outer boundaries too close to
the source to detect gravitational radiation.

Using a recently developed code for the solution of the
Einstein equations in nonvacuum spacetimes, the WHISKY

code, we have investigated the collapse of rapidly rotating
relativistic stars to Kerr black holes [5]. An important
aspect of these simulations is the detailed study of the
geometrical and dynamical properties of both the apparent
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and event horizons, allowing for the determination of both
the mass and angular momentum of the black hole with an
accuracy unprecedented for a 3D simulation. In turn, these
measures have set upper limits on the energy and angular
momentum lost during the collapse in the form of gravita-
tional radiation, the first such estimates coming from 3D
calculations.

However, as in previous works (e.g., Refs. [2–4]), the
simulations reported in [5] made use of numerical grids
with uniform spacing and thus with outer boundaries very
close to the initial position of the stellar surface. With these
restrictions, the gravitational radiation extracted does not
provide interesting information besides the obvious change
in the quadrupole moment of the background spacetime.
As we show below, the use of progressive mesh-refinement
(PMR) techniques has removed these restrictions, enabling
us to place the outer boundaries of the computational
domain at very large distances from the collapsing star.
This conceptually simple but technologically challenging
improvement has two important physical consequences.
First, it reduces the influence of inaccurate boundary con-
ditions at the outer boundaries of the domain while retain-
ing the required accuracy in the region where the black
hole forms. Second, it allows the wave zone to be included
in the computational domain and thus to extract the gravi-
tational waves produced in the collapse.

In practice, we have adopted a Berger-Oliger prescrip-
tion for the refinement of meshes on different levels [6] and
used the numerical infrastructure described in [7]. In addi-
tion to this, we have also implemented a simplified form of
adaptivity in which new refined levels are added at prede-
fined positions during the evolution. More specifically,
given an initial stellar model of mass M and equatorial
coordinate radius R, our initial grid consists of four levels
of refinement, with the innermost one covering the star
with a typical resolution of �x� 0:17M and with the
outermost having a typical resolution of �x� 1:38M and
extending up to �82:5M ’ 20:9R. As the collapse pro-
ceeds and the star occupies smaller portions of the compu-
tational domain, three more refined levels are added one by
one, nested in the four original ones. By the time the
simulation is terminated at �81:5M, the finest typical
spatial resolution is �x� 0:02M. A detailed discussion
of the grid and of its evolution will be given in [8].

The initial data for our simulations is described in [5]
and consists of axisymmetric rotating relativistic stars,
calculated as equilibrium solutions of the Einstein equa-
tions in a compactified domain and in polar coordinates.
For a direct comparison with the results in [1] and because
no shocks are observed during the collapse, the stars are
modeled with a polytropic equation of state (EOS) p �
K�, with � � 2 and with the polytropic constant which is
initially KID � 100. Once secularly unstable solutions are
found along sequences of fixed angular momentum or fixed
rest mass, we consider initial models that have the same
axis ratios but slightly larger central energy densities and
are dynamically unstable. Hereafter we restrict the discus-
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sion to the collapse of the most rapidly rotating dynami-
cally unstable model, namely, model D4 in [5], which
represents a star of mass M � 1:861M�, circumferential
equatorial radius Re � 14:25 km and rotating close to the
mass-shedding limit with a � 0:54 (cf. Table I of [5]). The
discussion of the emission from stellar models rotating at
smaller velocities will be presented in [8].

Although model D4 is dynamically unstable, it is very
close to a stationary solution, and we trigger its collapse by
reducing the pressure by & 2%, with a change in the value
of the polytropic constant. After the perturbation is intro-
duced, the constraint equations are again solved to enforce
the constraint violation to be at the truncation-error level.
As a contrast, in Ref. [1], rapid rotation was added to a
spherically symmetric solution and the large pressure de-
pletion inevitably produced a dependence of the results on
the amount of pressure reduction. Hereafter we concen-
trate on the gravitational-wave emission, but a discussion
of the dynamics of matter and trapped surfaces can be
found in [5].

While several different methods are possible for the
extraction of the gravitational-radiation content in numeri-
cal spacetimes, we have adopted a gauge-invariant ap-
proach in which the spacetime is matched with the
nonspherical perturbations of a Schwarzschild black hole
(see Refs. [9–11] for applications to Cartesian coordinates
grids). In practice, a set of ‘‘observers’’ is placed on
2-spheres of fixed coordinate radius rex, where they extract
the gauge-invariant, odd Q�o�

‘m and even-parity ��e�
‘m metric

perturbations [12]. Here ‘, m are the indices of the angu-
lar decomposition, and we usually compute modes up to
‘ � 5 with m � 0; modes with m � 0 are essentially zero
because of the high degree of axisymmetry in the collapse.
Validations of this approach in 3D vacuum spacetimes can
be found in Refs. [10,13,14], while its use with matter
sources has first been reported in [15].

Although the position of such observers is arbitrary and
the information they record must be the same for waves
extracted in the wave zone, we place our observers be-
tween 40M and 50M from the center of the grid so as to
maximize the length of the extracted waveform. We note
that, while a similar choice was made in Ref. [1], it still
provides only an approximate description of what would be
observed at spatial infinity.

Using the odd and even-parity perturbations Q�
‘m �

�Q�o�
‘m and Q	

‘m � ���e�
‘m, where ��

������������������������������������
2�‘	2�!=�‘
2�!

p
,

we report in Fig. 1 the lowest-order multipoles for Q	
‘m

with the offset produced by the stellar quadrupole removed
[8]. The left panel, in particular, refers to the ‘ � 2 mode
as extracted by four different observers at increasing dis-
tances and expressed in retarded time. The right panel
instead refers to the ‘ � 4 mode, with the inset giving a
comparison between the two modes and showing that the
gravitational-wave signal is essentially quadrupolar, with
the ‘ � 2 mode being about an order of magnitude larger
than the ‘ � 4 mode.
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FIG. 2. Power spectra of the waveforms reported in Fig. 1. The
dashed vertical lines indicate the frequencies of the QNMs of a
black hole, while the dotted ones indicate the w1 and wII modes
of a typical star.

FIG. 1. The left panel shows the ‘ � 2, even-parity perturbation as extracted by observers at different positions rex expressed in
retarded time. The right panel refers to the ‘ � 4 mode, with the inset offering a comparison in the amplitudes of the two modes.
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The very good overlap of the waveforms measured at
different positions is important evidence that the extraction
has been performed in the wave zone, since the invariance
under a retarded-time scaling is a property of the solutions
of a wave equation. The overlap disappears if the outer
boundary is too close or when the waves are extracted at
smaller radii. A similar overlap is seen also for the ‘ � 4
mode (not shown).

Another indication that the waveforms in Fig. 1 are an
accurate description of the gravitational radiation produced
by the collapse comes by analyzing their power spectra.
The collapse can be viewed as the rapid transition between
the spacetime of the initial equilibrium star and the space-
time of the produced rotating black hole. It is natural to
expect that the waveforms produced in this process will
reflect the basic properties of both spacetimes and, in
particular, the fundamental frequencies of oscillation. We
validate this in Fig. 2, where we show the power spectral
densities (PSD) of the waveforms of the metric perturba-
tions Q	

20 andQ	
40 reported in Fig. 1 (the units on the y axis

are arbitrary). The upper panel of Fig. 2, in particular,
shows the PSD ofQ	

20 and compares it with the frequencies
of the ‘ � 2, m � 0 quasinormal mode (QNM) of a Kerr
black hole with M � 1:861M� and a � 0:6 [16] (dashed
line at 6.7 kHz) as well as with the first wII ‘‘interface’’
mode for a typical compact star with M � 1:27M� and
R � 8:86 km (dotted line at 8.8 kHz) [17]. Similarly, the
lower panel of Fig. 2, shows the PSD of Q	

40, comparing it
with the ‘ � 4,m � 0 QNM of a Schwarzschild black hole
[17] (dashed line at 14.0 kHz) and the first w1 ‘‘curvature’’
mode [17] (dotted line at 12.8 kHz) [18]. It is apparent that
both peaks in the PSDs are rather far from the maximum
sensitivity area of modern interferometric and bar
detectors.

Although the waveforms have very short duration with
very broad PSDs, Fig. 2 shows that these have strong and
narrow peaks (a similar behavior can be shown to be
present also for the odd-parity modes [8]). Indeed, the
excellent agreement between the position of these peaks
and the fundamental frequencies of the vacuum and non-
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vacuum spacetimes is an important confirmation of the
robustness of the results obtained.

Using the extracted gauge-invariant quantities, it is also
possible to calculate the transverse traceless (TT)
gravitational-wave amplitudes in the two polarizations
h	 and h� as

h	 
 ih� �
1

2r

X
‘;m

�
Q	
‘m 
 i

Z t


1
Q�
‘m�t

0�dt0
�

2Y

‘m; (1)

where 
2Y
‘m is the s � 
2 spin-weighted spherical har-

monic. Because of the small amplitude of higher-order
modes, the TT wave amplitudes can be simply expressed
as h	 ’ h	�Q

	
20; Q

	
40� and h� ’ h��Q

�
30; Q

�
50�, where

Q�
30  Q�

50. Their waveforms are shown in Fig. 3 for the
detector at rex � 37:1M and for two different inclination
angles [8]. Note that the amplitudes in the cross polariza-
tion are about 1 order of magnitude smaller than those in
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FIG. 3. TT gravitational-wave amplitudes extracted by the
detector at rex � 37:1M and for two different inclination angles.
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the plus polarization, with the maximum amplitudes in
a ratio j�r=M�h�jmax=j�r=M�h	jmax ’ 0:06. Here the odd-
parity perturbations, which are zero in spacetimes with
axial and equatorial symmetries, are just the result of the
coupling, induced by the rotation, with the even-parity
perturbations.

A precise comparison of the amplitudes in Fig. 3 with
the corresponding ones calculated in [1] is made difficult
by the differences in the choice of initial data and, in
particular, by the impossibility of reaching a * 0:54
when modeling consistently stationary polytropes in uni-
form rotation. However, when interpolating the results in
[1] for the relevant values of a, we find a very good
agreement in the form of the waves, but also that our
estimates are about 1 order of magnitude smaller, with
j�r=M�h	jmax ’ 0:002 25. Furthermore, we observe the
amplitude of the gravitational waves to increase with the
pressure reduction, suggesting that the origin of the differ-
ence is related mainly to this [8].

Following Ref. [19] and considering the optimal sensi-
tivity of VIRGO for the burst signal only, we set an upper
limit for the characteristic amplitude produced in the col-
lapse of a rapidly and uniformly rotating polytropic star at
10 kpc to be hc � 5:77� 10
22�M=M�� at a characteristic
frequency fc � 931 Hz. In the case of Laser Inter-
ferometer Gravitational Wave Observatory (LIGO) I, in-
stead, we obtain hc � 5:46� 10
22�M=M�� at fc �
531 Hz. In both cases, the signal-to-noise ratio is S=N �
0:25, but this can grow to be & 4 in the case of LIGO II.
These ratios could be increased considerably with the
detection of the black hole ringing following the initial
burst [8]. Computing the emitted power as

dE
dt

�
1

32 

X
‘;m

���������dQ
	
‘m

dt

��������
2
	jQ�

‘mj
2

�
; (2)

the total energy lost to gravitational radiation is E �
13110
1:45� 10
6�M=M��. This is about 2 orders of magni-
tude smaller than the estimate made in [1] for a star with
a � 0:54, but larger than the energy losses computed
recently in the collapse of rotating stellar cores to proto-
neutron stars [20].

In conclusion, we have presented the first waveforms
from the gravitational collapse of rapidly rotating stars to
black holes using 3D grids with Cartesian coordinates. The
great potential shown by the PMR techniques employed
here opens the way to a number of applications that would
be otherwise intractable with uniform Cartesian grids.
Work is in progress to consider initial models with realistic
EOSs or in differential rotation, for which values a * 1
can be reached and more intense gravitational radiation is
expected.
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