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Derivation of the Order Parameter of the Chiral Potts Model
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We derive the order parameter of the chiral Potts model, using the method of Jimbo et al. The result
agrees with previous conjectures.
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FIG. 1. The square lattice with the cut rapidity line below a.
The solvable chiral Potts model is one of N-state spins
with nearest-neighbor interactions on a planar lattice L [1].
It is like other solvable models in that its interactions
satisfy the star-triangle relations. However, it is unlike
most of them in that it does not have the ‘‘rapidity differ-
ence’’ property. This makes the model mathematically
much more difficult. The free energy of the model has
been obtained using functional transfer matrix relations
[2–4], but the order parameters (spontaneous magnetiza-
tions) have so far defied calculation. In particular, the cor-
ner transfer matrix method appears to fail completely [5].

This is despite the fact that there is an elegant and
eminently believable conjecture for these order parameters
[6–8].

Here we derive the order parameters and verify the
conjecture. The method is quite similar to the ‘‘inversion
relation’’ method for calculating the free energy [9]. Both
involve assuming certain analyticity properties of a
‘‘�2�tq�’’ model (which is closely related to the superin-
tegrable chiral Potts model).

We take L to be the square lattice, drawn diagonally as
in Fig. 1. Each spin i takes one of N possible states, labeled
0; . . . ; N � 1. It interacts with a neighboring site j with
Boltzmann weight Wvh��i � �j� or Wvh��i � �j� if i is
below j and the edge is in the SW-NE or SE-NW direction,
respectively.

Here v; h each denote a set of rapidity variables. Let p �

fxp; yp; �p; tpg, where xp; yp;�p; tp are related to one
another by tp � xpyp,

xNp � yNp � k�1� xNpyNp �; kxNp � 1� k0=�N
p ;

kyNp � 1� k0�N
p ; k2tNp � �1� k0�N

p ��1� k0=�N
p �

(1)

and

k � �1� k02�1=2; 0< k; k0 < 1: (2)

Here k; k0 are constants, the same at all sites of the lattice,
and k0 is a ‘‘temperaturelike’’ variable, being small at low
temperatures. Here we take 0< k0 < 1, which means that
the system is ferromagnetically ordered. It becomes critical
when k0 ! 1.

Rapidities such as p; q; v; h are associated with the
dotted lines of Fig. 1 and may vary from line to line. If
05=94(13)=130602(3)$23.00 13060
the edges �i; j�, �i; k� of L are intersected by rapidity lines
v; h, ordered as in Fig. 1, then the edge weight functions
are Wvh��i � �j�, Wvh��i � �k� where

Wpq�n� � ��p=�q�
n
Yn

j�1

yq �!jxp
yp �!jxq

; (3)

W pq�n� � ��p�q�
n
Yn

j�1

!xp �!jxq
yq �!jyp

; (4)

where ! � exp�2�i=N� and v � fxv; yv; �v; tvg, h �
fxh; yh; �h; thg are rapidity sets satisfying (1).

If xp; xq; yp; yq;!xp all lie on the unit circle in an
anticlockwise sequence, then Wpq�n�, Wpq�n� are real
and positive. We refer to this as the physical case.

Hold the spin a in Fig. 1 fixed. Then the partition
function is

Z�a� �
X

�

Y
Wvh�i� j�

Y
Wvh�j� k�; (5)

the products being over all edges of each type (with their
appropriate rapidity variables), and the sum over all values
of the other spins, the boundary spins being set to zero.
The unrestricted partition function is Z�Z�0��


�
Z�N�1�.

We have followed Jimbo et al. [10] and cut the horizon-
tal rapidity line immediately below a, giving the left (right)
half line a rapidity p (q). Define

Fpq�a� � Z�a�=Z: (6)
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FIG. 2. The tp plane for N � 3, showing the cuts C0, C1, C2.
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We expect this ratio to tend to a limit when the lattice is
large. It will not depend on the ‘‘background’’ rapidities
v; h because of the star-triangle relation [1], which allows
us to move any of the v; h rapidity lines infinitely far away
from the spin a.

However, we cannot move the half lines p; q away from
a, so Fpq�a� will indeed be a function of p; q. It is the
probability that the central spin has value a. An exceptional
case is when q � p, when the cut disappears and the
recombined line can be moved to infinity, so

Fpp�a� � independent of p: (7)

What we can do is rotate p; q round a and then inter-
change them, which gives us some functional relations
satisfied by Fpq�a� [11]. If we define

~F pq�r� �
XN�1

a�0

!raFpq�a�; (8)

Gpq�r� � ~Fpq�r�= ~Fpq�r� 1�; (9)

then for the infinite lattice we obtain the relations

GRp;Rq�r� � 1=Gpq�N � r� 1�; (10a)

Gpq�r� � GRq;R�1p�r�; (10b)

Gpq�r� �
xq�q � xp�p!r

yp�q � yq�p!
r�1 GR�1q;Rp�r�; (10c)

YN

r�1

Gpq�r� � 1; (10d)

GMp;q�r� � Gp;M�1q�r� � Gpq�r� 1�: (10e)

Here R, M are automorphisms that act on the rapidities:

fxRp; yRp; �Rp; tRpg � fyp;!xp; 1=�p;!tpg: (11)

fxMp; yMp;�Mp; tMpg � fxp; yp; !�p; tpg: (12)

We regard tp as an independent complex variable and
xp; yp;�p as determined from it by (1). They are multi-
valued functions of tp: to make them single-valued we
must cut the tp plane as in Fig. 2. There are N cuts
C0; . . . ;CN�1, where Cj lies on the radial line arg�tp� �
2�j=N.

The case we shall be interested in is when j�pj> 1
and arg�xp� is between ��=�2N� and �=�2N�. Then xp
lies in a small approximately circular region R0 round
xp � 1, while yp lies in a plane with N correspond-
ing approximately circular holes R0; . . . ;RN�1 surround-
ing the points 1; !; . . . ; !N�1. We say that p lies in the
domain D1.

In the low temperatures limit k0 ! 0 and Cj, Rj both
shrink to the point !j. Then xp ! 1 and yp can lie any-
where except at a root of unity. We take p; q; h 2 D1 and
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�v � O�1�, xv ’ yv ’ 1. Then Wvh�n�; Wvh�n� are small
unless n � 0 (modN), which is the usual low-temperature
case. The sum in (5) is dominated by the contribution from
all spins other than a being zero, and we obtain

Fpq�a� �
k02��p=�q�

a

N2�1�!a��1�!�a�

Ya

j�1

1�!j�1tq
1�!j�1tp

: (13)

Let us take q to be related to p by

xq � xp; yq � !yp; �q � �p: (14)

Then (13) simplifies to

Fpq�a� �
k02

N2�1�!a��1�!�a�

1�!atp
1� tp

� O�k04�:

(15)

Thus to leading order in k0 we see that Fpq�a� is an analytic
and bounded function of tp except at tp � 1. This is con-
sistent with Fpq�a� and Gpq�r� having branch cuts (for
nonzero k0) on C0, but there is no indication of branch
cuts at C1; . . . ;CN�1.

We argue that this is exactly true for sufficiently small
nonzero values of k0. If we rotate and reverse the left half
line p anticlockwise below a, as in [11], it becomes a left-
pointing line with rapidity p0 � R�1p [12]. (To ensure that
at low temperatures the dominant contribution continues to
come from all noncentral spins being zero, we should
reduce �v to order k0, �h to order unity, and take xh ’
yh ’ 1.)

The half line p0 now lies immediately below q, and
from (14)

xq � yp0 ; yq � !2xp0 ; �q � 1=�p0 : (16)

This is precisely the condition for the combined weights of
the two half rows p0; q (summed over intervening spins) to
be those of the �2�tp0 � model [Eqs. (2.38)–(3.48) of [2],
with k � 0, ‘ � 2]. For a finite lattice, if there are s spins
to the left of a, then Z�a� depends on p only via tp, and is a
polynomial of degree s in tp.
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Further, when k0 is small and a � 0, this polynomial is
�1� tp�

s, and is small (of order k02) when 0< a < N.
Hence Gpq�r� is the ratio of two polynomials, each of
degree s and tending to �1� tp�

s as k0 ! 0.
By continuity, for sufficiently small but nonzero k0

the zeros of the polynomials must be close to tp � 1, i.e.,
tp0 � 1=!.

This is the same behavior as the free energy of the �2�tp0 �

model. This leads us assume, corresponding to Assumption
2 of [9], that Gpq�r� is analytic in the cut tp plane of Fig. 2,
except only for the branch cut C0 [13].

Now look at (10c). Using (14) it becomes, for r �
1; . . . ; N � 1,

x�1
p Gpq�r� � x�1

p Gp;q�r�; (17)

where p � R�1q; q � Rp. It follows that p; q satisfy the
relation (14) and xp � yp; yp � xp;�p � 1=�p. The left-
hand side of this equation is therefore the same as the right-
hand side, with the same value of tp, but with xp; yp
interchanged and �p inverted.

This is what happens if one crosses the branch cut C0 in
Fig. 2 and then returns to the original value of tp. Thus (17)
is equivalent to the statement that x�1

p Gpq�r� does not have
a branch cut at C0.

Write Gpq�r� as Gr�tp� and consider the function

Lr�tp� � x�1
p Gr�tp�Gr�!tp� 
 
 
Gr�!

N�1tp�: (18)

For r � 0 the factor x�1
p Gr�tp� has no cut on C0. From our

assumption, neither do any of the other G factors. Hence
Lr�tp� has no such cut. It is unchanged by tp ! !tp, so it
has no cuts at any of the Cj. When tp; yp;�p ! 1 (their
ratios remaining finite and nonzero), the Boltzmann
weights remain finite, so we expect Lr�tp� to be bounded
at infinity. From Liouville’s theorem it is therefore a con-
stant, so

Lr�tp� � Cr; 0< r< N; (19)

Cr being a constant [14].
When tp; yp � 0, then q � p and xNp � k. If

tp; yp; �p ! 1, then xNp � 1=k and q � M�1p. From (7)
and (10e) it follows that

Cr � k�1=NGpp�r�
N � k1=NGpp�r� 1�N; (20)

for r � 1; . . . ; N � 1.
Eliminating Cr and using (10d), we obtain

Gpp�r� � k�N�1�2r�=N2
(21)

for r � 1; . . . ; N.
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The order parameter of the chiral Potts model is

h!rai � ~Fpp�r�= ~Fpp�0� � Gpp�1� 
 
 
Gpp�r�; (22)

so we have

h!rai � kr�N�r�=N2
(23)

for r � 0; . . . ; N. This is the result previously conjectured
on the basis of series expansions [Eq. (1.20) of Ref. [8]].
We expect all functions to be analytic in the physical
ferromagnetically ordered regime (with positive real
Boltzmann weights) so our working and results should
remain true throughout 0< k0 < 1. The magnetic critical
exponents are #r � r�N � r�=�2N2�.

In [15] we go on to obtain Gpq�r� from a Wiener-Hopf
factorization of xp. The result is a special case of the �2�p

0�

free energy. For r � N, it and Lr�tp� can be obtained from
(10d). For N � 3 we have verified that these results are
consistent with previously obtained series expansions
[Eqs. (48)–(52) of Ref. [16]].
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