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Equation of State of an Interacting Bose Gas Confined by a Harmonic Trap:
The Role of the ‘‘Harmonic’’ Pressure
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A gas of interacting atoms confined by a three dimensional anisotropic harmonic potential is studied. It
is shown that there appear ‘‘new’’ thermodynamic variables instead of the usual pressure and volume: the
latter is replaced by (the inverse of) the cube of the geometric average of the oscillator frequencies of the
trap, and the former by the harmonic pressure responsible for the mechanical equilibrium of the fluid in
the trap. We discuss the origin and physical meaning of these quantities and show that the equation of state
of the gas is given in terms of these variables. The equation of state of a cold gas of interacting Bose atoms
in the Hartree-Fock approximation is presented. We indicate how the harmonic pressure can be measured
in current experiments.
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The current experimental activity in the field of cold
bosonic atoms [1–11] has prompted a review and develop-
ment of novel theoretical tools to gain a better understand-
ing of the thermodynamics of these systems. Toward this
end, both theoretical [12–16] and experimental work [6–
11] have been devoted to the elucidation of the temperature
dependence and structure of the condensed fraction of
atoms, the energy and heat capacity, and the release energy
in time-of-flight measurements. Very recently, Gerbier
et al. [11] have performed a detailed study of those ther-
modynamic properties in 87Rb. However, little attention
has been paid to the equation of state (EOS) per se. The
purpose of this Letter is to contribute to filling this gap. As
we shall indicate below, the EOS can be readily measured
in current experiments.

We believe that the EOS has not been fully explored due
to the fact that the volume and the usual pressure are no
longer thermodynamic variables in a fluid confined by an
external potential different from rigid walls. In other
words, most of our thermodynamic intuition is developed
with the use of pressure and volume as given thermody-
namic variables and we tend to lose sight that these are
appropriate only in systems contained in vessels. The
current cold gases are not of this type. They are confined
by a potential that interacts with the gas everywhere, not
only at the walls, and this results in the gas becoming
nonuniform. As a consequence, one reaches the conclusion
that the pressure is neither uniform everywhere and the
mechanical equilibrium condition is expressed, then, in
terms of the local pressure tensor and the external force
[17–19].

Thermodynamics, however, is a theory that deals with a
few global variables. As we show here, one can deduce the
role of (the inverse of) the cube of the geometric average of
the frequencies of a harmonic trap as the extensive thermo-
dynamic variable analogous to the volume. Then, one finds
that there exists an intensive variable, conjugate to the
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previous one, that plays an analogous role to the hydro-
static pressure in the sense that it is responsible for the
mechanical equilibrium of the fluid with itself and with the
external force of the trap. We shall refer to the inverse of
the cube of the geometric average of the frequencies as the
‘‘harmonic volume’’ V � !�3 and to its conjugate vari-
able as the ‘‘harmonic pressure’’ P . These identifications
allow us to construct the equation of state of these fluids,
namely P � P �N=V ; T�. We shall also refer to � � N!3

as the ‘‘harmonic’’ density.
The system we consider is a fluid (classical or quantum)

of N identical particles of mass m, in thermodynamic
equilibrium at temperature T, confined by a harmonic
anisotropic trap of frequencies !1, !2, and !3, with ! �

�!1!2!3�
1=3 the geometric average frequency. If there is

an interaction among the particles, we shall consider it to
be pairwise additive via a short-range potential v�j~ri �
~rjj�, with scattering length a. We shall concentrate mainly
on bosonic systems but the general results apply to fermi-
onic systems as well.

To motivate the introduction of the new variables, let us
analyze first the case of N noninteracting bosons. By
working in the grand canonical ensemble, the grand poten-
tial is found to be

���; T;!� � �kT
�
kT
	h!

�
3
g4���; (1)

where � � �=kT, and � is the chemical potential. gn���
are the Bose functions [20]. With this potential we can
readily calculate the number of particles N, the internal
energy E, and the entropy S as functions of �; T;!;

N �

�
kT
	h!

�
3
g3���; (2)

E � 3kT
�
kT
	h!

�
3
g4���; (3)
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and

S � k
�
kT
	h!

�
3
�4g4��� � �g3����: (4)

These are the same formulas found by using a different
approach [12] and already discussed in Refs. [16,21].

That ! is a bona fide thermodynamic variable can be
simply verified by imagining an adiabatic change of the
frequency of the trap at constant N: from Eqs. (2) and (4)
one finds that �T=!�3 is an adiabatic invariant and, there-
fore, a change in ! results in a change in temperature.
Now, N;E; S, and � must be extensive. Hence, since T and
� are intensive, one finds by simple inspection of the
previous formulas that !�3 must also be extensive. In a
harmonic potential the available volume for the gas is
infinite. However, at a given temperature, the gas will
mostly occupy a volume of the order of �kT=m!2�3=2,
namely, proportional to !�3. Thus, the harmonic volume
V � !�3 does make physical sense as a ‘‘volume’’ since
small frequencies imply large actual volumes and vice
versa. Notice an important point from the formula for N,
Eq. (2): because that equation is rigorously exact only in
the thermodynamic limit, such a limit must be N ! 1,
!! 0, but N!3 ! constant. This result will be used
below. The role of the thermodynamic limit in the present
form was originally pointed out by de Groot et al. [22] and
has already been discussed by several authors; see
Ref. [16] and references therein.

If V is an extensive variable, then, there must be an
intensive variable conjugate to it. This is

P � �

�
@�

@V

�
T;�

�
�kT�4

	h3
g4���; (5)

manifestly an intensive variable [21]. It is clear that � �
�PV , in full analogy to a gas confined by rigid walls [20].
The physical meaning and significance of the harmonic
pressure P is given further below. A simple but very
illuminating result is the classical limit of the above for-
mulas [20], one finds PV � NkT, the equation of state of
an ideal classical gas.

We now turn our attention to a fluid with interactions.
The thermodynamics of the system is found by calculating,
say, the Helmholtz free energy,

F�T;N;!�3� � �kT lnTre��H; (6)

where we have already written !�3 as the corresponding
extensive variable. H � K 
Uint 
 Vext is the
Hamiltonian of the system with K �

P
i ~p

2
i =2m the total

kinetic energy, Uint �
P
i<ju�rij� the interaction energy

among the particles, and Vext �
P
i�1=2�m�!

2
1x

2
i 


!2y
2
i 
!3z

2
i � the external potential. One can show [23]

that in the thermodynamic limit described above, N!3

must be intensive in order for F to be extensive. That is,
only in such a limit the Helmholtz free energy can be
written as F�N;!3; T� � Nf�N!3; T�. Since N is exten-
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sive by definition and F must be extensive then V � !�3

is extensive. The argument can be extended to any short-
range multiple particle-particle interaction potential.

The harmonic pressure, conjugate to V , is thus

P � �

�
@F

@V

�
N;T

�
2

3
!3hVexti; (7)

where the second line follows from using Eq. (6), and the
average is taken over the corresponding (quantum or clas-
sical) canonical ensemble. Expression (7) for the harmonic
pressure will prove to be very useful for experimental and
calculational purposes. In order to grasp the physical
meaning of P we make use, first, of the virial theorem of
classical and quantum mechanics. This yields hVexti �

hKi � 1
2 h
P
i ~ri 

@Uint

@~ri
i:, which, when substituted into

Eq. (7) gives

P �
2

3
!3hKi �

!3

3
h
X
i

~ri 
@Uint

@~ri
i: (8)

If the system is classical, the first term in the right-hand
side equals N!3kT, the classical ideal gas harmonic pres-
sure. Equation (8) is a remarkable formula. It is formally
identical to the virial equation of the hydrostatic pressure if
one changes !�3 by the volume V of a fluid confined by
rigid walls [18]. Again, in the thermodynamic limit de-
scribed above, it can be shown that the harmonic pressure
is intensive depending only on T and � � N=V � N!3.
This is the equation of state of the fluid, P � P ��; T�.

To show that P is the variable responsible for mechani-
cal equilibrium, we recall first that in a nonuniform fluid
the pressure is no longer a constant neither isotropic.
Instead, the mechanical equilibrium of the fluid is given
in terms of the pressure tensor [24]. The condition for
mechanical balance is

r  ~P�~r� � ~f� ~r�; (9)

where ~P is the pressure tensor of the fluid and ~f is the
external force per unit of volume. The latter is generated by
the trap and it is given by ~f�~r� � �n�~r�m�!2

1xî
!
2
2yĵ


!2
3zk̂�, where n�~r� is the local particle density of the fluid.

By taking the scalar product of both sides of Eq. (9) with ~r,
integrating over all space and using Eq. (7) [see Eq. (11)
below], one finds,

P � !3
Z
d3r

1

3
Tr ~P�r�: (10)

The physical meaning of the harmonic pressure is clear
now. It is the integral of the invariant of the pressure tensor
that is identified as the ‘‘pressure’’ in fluid mechanics [24].
For a uniform system confined within rigid walls,
�1=3�Tr ~P � p, the hydrostatic pressure. That is, the har-
monic pressure is not only the formal analog of the hydro-
static pressure in a uniform fluid but it has also the same
physical meaning: it is the force that the fluid exerts against
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itself and against the trap in order to reach mechanical
equilibrium. That the harmonic pressure P does not have
units of force per unit of area is irrelevant, just as the
harmonic volume V does not have units of volume;
what matters is that their product, as with any pair of
thermodynamic canonical conjugate variables, does have
units of energy.

The harmonic pressure, remarkably, is much more easily
measurable than its hydrostatic counterpart. This can be
seen from Eq. (7), by recasting it as,

P �
2

3
!3

Z
d3rn� ~r�

�
1

2
m�!2

1x
2 
!2

2y
2 
!2

3z
2�

�
: (11)

In current experiments with cold atoms the main quantity
that it is measured is the particle density n� ~r� [1–11]. Thus,
the experimental elucidation of the equation of state of
these gases could be done right away.

As can be seen from the virial expression Eq. (8), the
harmonic pressure strongly depends on the interatomic
collisions. In what follows, we shall consider a gas of
cold bosonic atoms in a self-consistent Hartree-Fock
(HF) approximation [15,25–28]. This description takes
into account the presence of the thermal cloud below the
Bose-Einstein condensation (BEC) transition and it has
been found to be in good agreement with experimental
P

ρ

T

BEC

FIG. 1 (color online). Equation of state P � P ��; T� for an
interacting Bose gas in the Hartree-Fock approximation. The
BEC transition and the BEC region are indicated. The intervals
are 0:001 � T � 0:01, 10�8 � � � 10�6 (� � N!3), and
10�11 � P � 10�8 in reduced units. These intervals correspond
to gases with 0:3 � * � 0:7.
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data [11]. As we can see from Eq. (11), we only need to
know the particle density profile n�~r� in order to calculate
the harmonic pressure. The HF approximation yields such
a profile as the sum of the thermal component nth�~r� plus
the condensed fraction density n0� ~r�. The thermal part is
found self-consistently as [25]

nth� ~r� �
1

(3T
g3=2����� Veff�~r���; (12)

where (T is the thermal de Broglie wavelength. The effec-
tive potential is given by

Veff�~r� � Vext� ~r� 
 2Un0� ~r� 
 2Unth� ~r�; (13)

and the condensed particle density is found from

Un0�~r� � �� Vext� ~r� � 2Unth� ~r� (14)

when the right-hand side is positive and it is zero other-
wise. In the above expressionsU � 4) 	h2a=m is the mean-
field coupling constant. The above equations can be solved
with the restriction that the total number of particles isN �R
�n0� ~r� 
 nth�~r��d3r. Figures 1–3 summarize the EOS of

this fluid, P � P ��; T�. We use dimensionless units in
terms of the mass of the atoms m, Planck’s constant 	h,
and the scattering length a, assumed to be positive. This
P

ρ

(B) Hartree-Fock gas 

(A) Ideal gas 

FIG. 2. Isotherms P vs �. The intervals are 0 � P �
4� 10�9, 0 � � � 6� 10�7. (a) Ideal gas. (b) Hartree-Fock
gas.
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(B) Hartree-Fock Gas 
P

(A) Ideal gas 

FIG. 3. Isochores P vs T. The intervals are 0 � P � 10�8,
0 � T � 0:01. (a) Ideal gas. (b) Hartree-Fock gas.
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choice of units can be cast in terms of the scaling parameter
* � ��N0 � N�=kT0c , introduced by Giorgini et al. [15],
with N0 the number of atoms in the condensate and T0c the
critical temperature of the corresponding ideal gas at the
same harmonic density � � N!3. The fragment of the
EOS that we present in the figures goes from * � 0:2 to
* � 0:7. The current experiments with alkaline atoms [6–
11] lie within this interval. For instance, *� 0:3–0:4 in
Ref. [7], while * � 0:49 in Ref. [11]. The interatomic
interactions in these intervals cannot be neglected.
Figure 1 is the surface P � P ��; T�. We have indicated
the curve of the BEC transition found when the condensed
fraction becomes different from zero. In Figs. 2 and 3 we
show the isotherms P vs � and the isochores P vs T both
for the HF and the ideal cases [see Eq. (5)]. The main
observation, quantitatively measurable, is that contrary to
the ideal case, the condensed fraction of interacting atoms
plays a thermodynamic role. That is, in the ideal case the
condensed fraction exerts no pressure (just as in the usual
BEC in a box). Thus, the role of the interactions is not only
to shift the value of the critical temperature (at a given
harmonic density), as it has been extensively verified, but
the interactions also allow the atoms in the condensed
phase to participate in the process of mechanical equilib-
rium. From Fig. 2 we see that the pressure continues to
grow above the BEC transition as the density is increased,
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while from Fig. 3 we find that the pressure saturates to a
value different from zero as the temperature vanishes.

With the knowledge of the harmonic pressure and vol-
ume, the number of particles and the chemical potential,
and the internal energy and temperature, the thermody-
namics of these systems is fully determined since the
entropy is given by TS � E
 PV ��N.
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