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Cell Fates as High-Dimensional Attractor States of a Complex Gene Regulatory Network
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Cells in multicellular organisms switch between distinct cell fates, such as proliferation or differen-
tiation into specialized cell types. Genome-wide gene regulatory networks govern this behavior.
Theoretical studies of complex networks suggest that they can exhibit ordered (stable) dynamics, raising
the possibility that cell fates may represent high-dimensional attractor states. We used gene expression
profiling to show that trajectories of neutrophil differentiation converge to a common state from different
directions of a 2773-dimensional gene expression state space, providing the first experimental evidence
for a high-dimensional stable attractor that represents a distinct cellular phenotype.
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The maintenance of distinct phenotypic states of cells in
multicellular organisms, such as the states of proliferation
or differentiation into specialized cell types, as well as the
switchlike transitions between these ‘‘cell fates,’’ are gov-
erned by a genome-scale network that consists of 10 000s
of genes that regulate each other’s activity (i.e., gene
expression). This genome-wide regulatory network is iden-
tical in essentially every normal cell, and yet it establishes
the distinct, stable gene expression profiles associated with
the various cell types. Thus, the phenotypic state S�t� at
time t of a cell may be represented by the activity xi�t� of
the N individual genes i in the genome, i.e., S�t� �
�x1�t�; x2�t�; . . . ; xN�t��, a state vector, where xi�t� depend
on each other as determined by the network of gene
regulatory interactions. It remains unclear how such a large
and irregular (i.e., ‘‘complex’’) network [1] can give rise to
a globally coherent response that has macroscopic mani-
festations, such as the distinct, stable cell fates and the
conditional cell fate transitions that require coordinated
changes in the activity of thousands of genes [2,3]. Thus,
if S�t� represents the dynamics of a complex network of a
large number of interdependent variables xi�t�, the chal-
lenge is to predict the long-term dynamic behavior of S�t�.
Although data on the topology of large biological and
nonbiological networks have become available in the past
few years, analysis has been largely limited to the charac-
terization of their static topology [4–7], and it has not been
possible previously to model or experimentally measure
the dynamic behavior of such complex networks due to the
lack of appropriate information or tools. Thus, our under-
standing of the global dynamics is largely based on com-
puter simulations of statistical ensembles of generic
complex networks [8,9]. Such theoretical studies suggested
that large, random gene networks can, given a particular
network architecture, produce ‘‘ordered’’ dynamics, i.e.,
have relatively few stable attractor states in which a large
fraction of the genes remain stationary despite their global
interdependence. This theoretical result led to the proposal
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that the attractor states represent the various differentiated
cell types [8,9], or, more generally, different cell fates [2].
Although plausible theoretically, there is to date no experi-
mental support for the existence of high-dimensional
stability in a natural complex molecular network or for
the concept that attractors represent stable cell fates.

Unlike in computer models, where one can use numeri-
cal simulations to evaluate the state space structure, in real
cells we cannot access any arbitrary initial network state in
order to monitor its time evolution. To obtain experimental
evidence that a given stationary phenotypic state is a high-
dimensional attractor state to which a volume of initial
states contracts, we exploited the fact that human promye-
locytic HL60 cells can reliably be triggered in vitro to
assume a stable state of neutrophil differentiation by a
variety of means. This allowed us to follow different state
space trajectories to the differentiated state. Specifically,
the solvent dimethylsulfoxide (DMSO) and the hormone
all-trans-retinoic acid (atRA) both trigger the same cell fate
switch into neutrophils in HL60 cells [10,11]. We used
DNA microarrays [12] to monitor genome-wide mRNA
steady state levels at various times. These gene expression
profiles serve as surrogate measures for configurations of
gene activation states, and hence, for S�t�. This allowed us
to determine the two trajectories in the two different neu-
trophil differentiation processes, SA�t� and SD�t�, triggered
by atRA and DMSO, respectively. By utilizing two bio-
chemically distinct stimuli that are likely to target distinct
sets of genes, we provoke the trajectories to initially di-
verge to different regions of the state space. If the final
differentiated state is an attractor, it can be approached
from different directions of the high-dimensional state
space. Thus, the attractor hypothesis predicts that after an
initial divergence, the two trajectories SA�t� and SD�t� will
converge to the common end point. The convergence of
trajectories from different directions across a large number
of gene dimensions is a necessary condition for a high-
dimensional attractor state and cannot be easily explained
1-1  2005 The American Physical Society



PRL 94, 128701 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
1 APRIL 2005
by the existing notion of a specific, unique ‘‘differentiation
pathway’’ as the common target of the two drugs.

Stimulation of HL60 progenitor cells with either DMSO
(1:25% v=v) or atRA (10�7 M) resulted in their differen-
tiation into neutrophils within six days as previously re-
ported [10,11] (see the supplementary material in [13] for
details). Gene expression profiles across �12 600 genes
were measured for the differentiation processes induced by
DMSO and atRA at 0, 2, 4, 8, 12, and 18 h and daily
thereafter until day 7 using oligonucleotide DNA micro-
arrays. The relative expression level with reference to that
at 0 h was used for xi�t�, expressed as the log-transformed
ratio of the measured signals: xi�t� � log2�signalA;Di �t�=
signali�t � 0��, commonly referred to as ‘‘signal-log ratio’’
(SLR). A set of N � 3841 genes remained after filtering
out genes whose expression signal was too low in this cell
type to be considered significant or that did not exhibit a
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FIG. 1 (color). Comparison of the two gene expression trajec-
tories for the subset of N � 2773 genes during neutrophil
differentiation. (a) The genes were clustered by a self-organizing
map into 15	 16 ‘‘miniclusters’’ with regard to their temporal
profiles across both differentiation processes using the GEDI

program [15]. Each minicluster is mapped onto the same corre-
sponding ‘‘tile’’ in all the ‘‘mosaics,’’ each of which represents a
snapshot of S�t�. Tile colors indicate the expression level of the
cluster centroid; numbers on color bar: gene expression levels in
SLR units. (b) Principal component analysis. Each point repre-
sents an individual expression profile S�t� within one of the two
differentiation processes (red circles: atRA; blue squares:
DMSO) projected onto the first two principal components
(PC1 and PC2).
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significant change in expression during the entire course of
the experiment.

Unlike the use of DNA microarrays to identify specific
genes, we treated genes as anonymous members of a single
ensemble containing N genes and calculated the intertra-
jectory distance b�t� between SA�t� and SD�t� at corre-
sponding time points. This ensemble property of the
population of genes is a robust measure that is not biased
by noise at the level of individual gene measurements. b�t�
was quantified as the ‘‘inverse correlation,’’ b�t� �
1� r�t�, where r�t� is the Pearson coefficient of correlation
between the two state vectors SA�t�, SD�t� at time t.

We first examined the ultimate convergence of the atRA-
and DMSO-induced neutrophils, i.e., whether there is a
negligible disparity at day 7 between SA�7 d� and SD�7 d�
as expected based on functional comparison. The state
vector disparity for microarray replicates was experimen-
tally determined to be breplicate < 0:01 in three separate
hybridizations. The disparity between different microarray
samples within the same treatment group measured at
different days after the cells had reached the stationary
state (days 6 vs 7 and 11 vs 12; for both processes), and
hence an upper bound estimate of intersample variability,
was also low (bstat � 0:14� 0:02). We found that at day 7
the final disparity was b�7 d� � 0:42. Because b�7 d�>
bstat, this final disparity cannot be explained by measure-
ment noise alone. The lack of equivalence of the trajecto-
ries at the end of differentiation indicates that DMSO and
atRA-induced neutrophils are not entirely identical, as
previously suggested on biological grounds [14]. Thus,
there are some genes whose expression may not be relevant
to the macroscopic definition of neutrophils and are differ-
entially regulated by DMSO and atRA. For the analysis of
the trajectory we therefore focused on the subset of genes
whose expression in atRA vs DMSO-induced neutrophils
(at day 7) was considered to be not significantly different
(see the supplementary material in [13]). With this filter we
obtained a subset of N � 2773 genes (�72% of the initial
set of N � 3841 genes).

Since it is difficult to display thousands of dimensions
(genes) for both processes simultaneously, we first reduced
the dimensionality by using the gene expression dynamics
inspector (GEDI) program [15] and principal component
analysis. GEDI enables the visualization and comparison of
multiple time series by mapping each expression profile,
i.e., snapshot of S�t�, into a ‘‘mosaic’’ representation
through dimension reduction and reordering of the genes
into miniclusters of typically 1–10 similarly behaving
genes using a self-organizing map. The GEDI mosaics
[Fig. 1(a)] revealed that starting with an identical expres-
sion pattern, the two processes exhibit clearly distinct
genome-wide gene expression patterns by 12–18 h after
treatment with DMSO and atRA, as indicated by different
color patterns. After this initial divergence the GEDI mo-
saics converged to a virtually identical pattern by day 6.
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Importantly, the genome-wide changes of the patterns in
GEDI show that the convergence occurred with respect to a
large portion of the genome, i.e., to a high number of state
space dimensions.

To more formally display the trajectories, we next
mapped the profiles into a reduced dimension space
spanned by principal components (PCs) of the gene ex-
pression data with respect to variations in gene dimension.
Figure 1(b) shows the trajectory in the reduced ‘‘state
space’’ spanned by the two primary principal components,
PC1 and PC2, which explain 31% and 14% of the variation
in the expression data, respectively. In this projection, the
two trajectories diverge and then converge at the end of
differentiation. PC1 appears to account for the expression
change due to differentiation, while PC2 reflects the dif-
ference between the two trajectories.

Finally, we quantified the time evolution of the intertra-
jectory disparity using the aggregate variable b�t�.
Figure 2(a) shows that for the converging subset of N �
2773 genes (solid symbols) the disparity increased initially
to b�t� � 0:80 (i.e., there is almost no correlation between
the two trajectories) on day 1, and then decreased to 0.14, a
level indistinguishable from experimental variability bstat
(see above). Significantly, even if b�t� for the raw data for
all 3841 genes were plotted [empty symbols, Fig. 2(a)], the
initial divergence and terminal convergence remained, ex-
cept that the trajectories did not fully converge at day 7 as
mentioned earlier. A nearly identical partial convergence
of the trajectories was observed when gene expression
profiles were monitored in a separate, independent repeat
experiment using an entirely different (spotted cDNA fil-
ter) array technology [Fig. 2(b)]. Thus, the time course of
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FIG. 2 (color online). Time evolution of the state space dis-
tance between the two trajectories for cells treated with atRA
versus DMSO. (a) Time course of disparity b�t�. Open symbols:
entire set of N � 3841 genes; solid symbols: subset of N �
2773 genes with common expression level in the atRA- and
DMSO-differentiated neutrophils. (b) Comparison of two differ-
ent methods for gene expression profiling. Oliginucleotide ar-
rays: data obtained with Affymetrix microarrays (N � 3841
genes); cDNA arrays: data from independent experiments using
low-density cDNA arrays (N � 453 genes). b�t� represents the
disparity between the profiles in the two treatments at day 6
relative to the peak value in day 1.
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the aggregate variable b�t� behaves as if thousands of genes
in the complex network exhibit a globally coherent dy-
namic pattern of attraction to a common stable state.

An alternative explanation for the transient divergence
of the two trajectories is that they move along the same
path, but at different rates. However, we found more than
100 genes, including the neutrophil differentiation markers
CD11b and G-CSFR1, that exhibited essentially equivalent
dynamics in the atRA- and DMSO-triggered processes,
hence excluding an overall temporal shift in differentia-
tion. The convergence of the trajectories SA�t� and SD�t�
defined by the 2773 genes is consistent with the transition
into a high-dimensional attractor state with respect to this
large portion (72%) of the gene network. However, this
does not imply that the two observed trajectories are an
unbiased sample of trajectories near the terminus since
kinetics may play a role [16] and thus, state space proper-
ties near the attractor cannot be inferred directly. The
number of time points monitored in the experiments also
does not allow a detailed state space analysis as in other
high-dimensional dynamic systems [17].

In the present study, we showed that even in the absence
of knowledge of the specific network architecture, it is
possible to use genome-wide gene expression profiling to
probe the state space structure of a natural complex net-
work and extract characteristic signatures of a stable high-
dimensional attractor. It is not at all obvious that such
stable behavior should arise from the interaction of a large
number of irregularly connected elements [18,19]. But an
important result from the analysis of statistical ensembles
of discrete genetic networks is that given some global
network architectural features, a complex network will
spontaneously produce globally coherent patterns of gene
activation, i.e., quickly settle down in one of a relatively
small set of stable attractors instead of eventually visiting
the entire state space [8,9]. The architectural features of the
network known to enlarge the regime of ordered behavior
include (i) sparseness of interactions [9], (ii) preferential
use of a certain subset of functions for the regulatory
interactions between genes [9,20], and (iii) a ‘‘scale-
free’’ topology [21,22]. Sparseness, (near) scale-free archi-
tecture [5,23–25], and a bias in the occurrence of regula-
tory functions [26] have all been found to be predominant
in real gene or protein regulatory networks.

The existence of discrete, mutually exclusive cell states
has long been suggested to reflect multistability in small
regulatory circuits comprised of two or a few elements that
arise due to nonlinear regulatory relationships [27–29],
and bistability in local signaling modules has recently
been verified [30,31]. However, genomic and proteomic
analysis of molecular networks, as well as graph theory
principles, indicate that molecular interactions in the cell
typically form a single, large connected network (giant
component) that may span 90% of the genome [5,32,33].
Indeed, given the mutual exclusivity of cell fate programs
1-3
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[2,34], the action of postulated local ‘‘pathway modules’’
thought to serve individual cell functions must also some-
how be globally coordinated. Moreover, a whole-genome
view is also necessary because cells receive a broad range
of simultaneous biological signals, as well as nonspecific
(chemical or mechanical) perturbations [2,35] which influ-
ence genes across the entire genome—yet they reliably
integrate all these inputs and select only one of a few
possible cell fates [2].

Thus, formal network architecture considerations as
well as experimental observation of cell fate behavior
also support the idea that the genome-scale regulatory
network can act as an integrated entity and give rise to
coherent, higher-order dynamic patterns, such as stable
high-dimensional attractors.
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