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Bagnold Scaling, Density Plateau, and Kinetic Theory Analysis of Dense Granular Flow
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We investigate the bulk rheology of dense granular flow down a rough slope, where the density profile
has been found to show a plateau except for the boundary layers in simulations [Silbert et al., Phys. Rev. E
64, 051302 (2001)]. It is demonstrated that both the Bagnold scaling and the framework of kinetic theory
are applicable in the bulk, which allows us to extract the constitutive relations from simulation data. The
detailed comparison of our data with the kinetic theory shows quantitative agreement for the normal and
shear stresses, but there exists a slight discrepancy in the energy dissipation, which causes a rather large
disagreement in the kinetic theory analysis of the flow.
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Flowing granular material behaves like a fluid, but com-
prehensive understanding of its rheology is still far from
complete. In the low-density regime with a large shear rate,
grains interact through instantaneous collisions and are
described by a hydrodynamic model based on the kinetic
theory of inelastic hard spheres [1]. As the system becomes
denser, the independent collision assumption becomes
questionable and the one particle distribution of grain
velocity may not be characterized by a small number of
parameters or temperatures. When grains are nearly closed
packed, they may experience enduring contacts, and the
system behaves as in plastic deformation.

One of a few established laws that hold for granular
rheology up to the relatively dense regime is Bagnold scal-
ing [2], which states that the shear stress is proportional to
the square of the strain rate. In fact, this is the only possible
form for the stress in the flow of rigid grains characterized
by the shear rate _� and the packing fraction �, because _��1

is the only time scale. Simple dimensional considerations
give the Bagnold scaling for the shear stress S as

S � A���m�2�d _�2; (1)

where m is the grain mass, � is the grain diameter, and d is
the spatial dimension, with A being a dimensionless coef-
ficient that depends on �. Obviously, this scaling should
have a broad range of validity for a simple shear flow of
cohesionless hard grains; it should hold until either the
system becomes so dense that the elasticity of particles
comes into the problem or the shear banding destabilizes
the uniform shear flow. In the case of gravitational flow
down a slope, the shear is brought about by the gravity and
the gravitational acceleration g brings another time scale
into the problem, but the Bagnold scaling is expected to
hold in the denser region where the effect of gravity on
particle orbits between collisions is not significant.
Actually, the Bagnold scaling is observed in experiments
[2,3] and simulations [4] in the slope flow quite well.

Recently, Silbert et al. performed large scale molecular
dynamics simulations on dense slope flows [4], and they
found the interesting fact that the grain density is almost
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constant and independent of the depth except for the
boundary layers near the bottom and the surface. This is
quite intriguing because the density is not nearly the closed
packed density; it depends upon the inclination angle 
 but
upon neither the total depth of the flow H [4] nor the
roughness of the slope [5]. Somehow, the system adjusts
its temperature to keep the density constant along the depth
direction.

This is, however, not difficult to understand if one
extends the Bagnold scaling to the pressure; under the
same condition, the pressure, or the normal stress N,
should have the same form

N � B���m�2�d _�2 (2)

as S with another dimensionless coefficient B; thus the
ratio of S=N depends upon the packing fraction �, but not
on the shear rate _�. In the gravitational slope flow, the force
balance gives S=N � tan
, and thus we have

A���=B��� � tan
; (3)

which shows the packing fraction is determined by the
inclination 
 but does not depend upon the depth H. This
argument suggests the existence of the bulk region with the
density plateau in the gravitational flow is very general and
independent of detailed properties of grains.

In order to determine how the packing fraction � de-
pends on 
, we need a theory that gives constitutive rela-
tions. This has been done by Louge [6] using a kinetic
theory for inelastic hard spheres [7]. It is disappointing,
however, to find that the kinetic theory fails to give correct
density profiles; two branches of solution for � were found,
but one gives too small � and the other gives opposite 

dependence of � to the one observed in simulations, which
implies the branch is a dynamically unstable one. This
situation is a little puzzling because the kinetic theory
has been shown to hold in the case of sheared flow in the
similar density regime [8].

In this Letter, we present a detailed analysis of our
simulations on the bulk region of two-dimensional gravi-
tational flow, assuming the framework of kinetic theory. In
1-1  2005 The American Physical Society



ν

y

(a)
0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140

θ=20
θ=21
θ=22
θ=23

θ=20,BC2
θ=20,H=100

T
,T~

y

(a)

(b) θ=20:T~/0.456
θ=21:T~/0.513
θ=22:T~/0.571
θ=23:T~/0.696
θ=20,BC2:

T~/0.456

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140

0 20 40 60 0 20 40 600

2

4

∂ y
q/

( S
γ).

y

(a)

(b) (c)θ=20:T~/0.456
θ=21:T~/0.513
θ=22:T~/0.571
θ=23:T~/0.696
θ=20,BC2:

T~/0.456

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140

0 20 40 60 0 20 40 600

2

4

-1.0

-0.5

0.0

0.5

T
/γ

 2.

y

(a)

(b) (c)θ=20:T~/0.456
θ=21:T~/0.513
θ=22:T~/0.571
θ=23:T~/0.696
θ=20,BC2:

T~/0.456

0 500

3

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140

0 20 40 60 0 20 40 600

2

4

-1.0

-0.5

0.0

0.5

y

θ
g

FIG. 1 (color online). The y dependences of the packing
fraction � (a), the granular temperature T (lines) and the rota-
tional temperature ~T (symbols) (b), and @yq=�S _�� (c) for various
inclination angles 
. The inset in (a) shows a schematic diagram
of the system with a coordinate. For most of the data, the bottom
boundary is BC1 (see text) and the total depth H is 50, but the
data with BC2 and H � 100 are also given for 
 � 20�. In (b), ~T
are divided by the factors 0:456 (
 � 20�), 0:513 (
 � 21�),
0:571 (
 � 22�), and 0:696 (
 � 23�) to show ~T / T in the bulk
region. The inset in (c) shows that T= _�2 is roughly constant in
the bulk (see text).
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contrast to previous works, where the overall profiles from
hydrodynamic models were discussed [9], we examine
each constitutive relations separately using data in the
bulk to avoid the uncertainty in a boundary condition for
hydrodynamic equations.

First, we show how the bulk behavior is understood
within the framework of kinetic theory. In the granular ki-
netic theory, the kinetic temperature T � mh�c� v�2i=d is
treated as a separate variable, which introduces an addi-
tional time scale. Here, c is the particle velocity, h� � �i
represents the average over the microscopic scales, and
v � hci. The shear stress is given by the momentum flux;
this is m‘��� _�n

����������
T=m

p
in the elementary transport theory,

where n is the number density and ‘��� represents the
mean free path. More generally,

S � f2���m
1=2�1�dT1=2 _�; (4)

with a dimensionless function f2���, which depends on �
and other material parameters such as a restitution coeffi-
cient. Similarly, we have for the normal stress N, the
energy dissipation �, and the heat flux q

N � f1�����dT; (5)

� � f3���m�1=2��d�1T3=2; (6)

q � �f4���m
�1=2�1�dT1=2@yT; (7)

with @y � @=@y. The forms (4)–(7) represent the quite
general framework of kinetic theory [1], although func-
tional forms fi��� vary depending upon the level of
approximation.

These expressions should be compatible with the
Bagnold scaling when the only relevant time scale is
_��1. Equation (4) of S indicates that T / _�2 in order that

the Bagnold scaling (1) should hold. In the kinetic theory,
T is determined by the energy balance equation

�@yq
 S _�� � � 0 (8)

in the steady flow. When the divergence of the heat flux
�@yq is zero as in the case of the uniform shear flow due to
the symmetry in the y direction, T is determined by the
local balance between the viscous heating S _� and the
energy loss �; then the time scale that determines T is
the shear rate only. S _� � � with Eqs. (4) and (6) gives

T � �f2���=f3����m�2 _�2; (9)

and thus the Bagnold scaling holds. In the slope flow, the
divergence of the heat flux is not necessarily zero, but it
turns out to be small compared with the other terms.
Therefore, from Eqs. (4), (5), and (9), and S=N � tan
,
we have

tan
 �
����������������������
f2���f3���

q
=f1���; (10)

which gives � as a function of 
 if we know fi���.
In the following, the above analysis is examined in detail

in comparison with the data of our two-dimensional simu-
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lations on the soft sphere model with the disk mass m, the
diameter �, and the moment of inertia I � m�2=10 as in
Ref. [4]. The particle stiffness is taken to be in the region
where the flow behavior is already in the hard sphere limit
[10], which allows us to employ the constitutive relations
for hard disks in the kinetic theory analysis in the follow-
ing. The linear spring-dashpot model and the Coulomb
friction with the coefficient � � 0:5 are employed, and
the periodic boundary condition is imposed along the flow
direction. The bottom boundary is made rough by attaching
disks of diameter 2�, which we refer to as BC1: See
Ref. [4] for detailed descriptions of the model (our model
corresponds to the model ‘‘L2’’). We confirmed that our
data agree with theirs in the bulk, although our slope length
(20�) is shorter than theirs (100�). We show only the data
for 
  20� with H � 50, which is well above the stop-
ping angle 
stop (
stop � 18� [4]); the boundary effects
become significant for 
 closer to 
stop [5]. The boundary
effects are examined by simulating with a slope covered
with disks of diameter � (BC2).

To compare our data with the kinetic theory, we use the
normal restitution coefficient ep � 0:92 and the tangential
restitution coefficient � � 1, although the tangential res-
titution coefficient in the simulation is not constant because
of sliding collisions with the Coulomb friction [11]. The
Coulomb friction is important in simulation, but no kinetic
theories have been worked out yet with it in two dimen-
sions [12].

Figure 1 shows the y dependence of (a) �, (b) T, and
(c) @yq=�S _�� for various inclination angles 
; most of the
1-2



TABLE I. The constitutive relations from kinetic theory in Ref. [13], with parameters # � 4I=�m�2�, a � #�1
 ��=�2�1
 #��,
r � �1
 ep�=2, and C � ���1� ~T=T�a2 
 �5� 8r�a
 2�5� 3r��=2. g0��� is the radial distribution function.

f1 �4='���1
 2r�g0����
f2 �1=Cg0���

����
'

p
��1
 �g0����r
 a��f1
 �g0�����3r� 2�r
 2ar� a2�1
 ~T=#T��g 
 �4�2g0���r='

3=2��1
 a=2r�
f3 �4�2g0���r='

3=2�f8�1� ep� 
 4#�1
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�1�1
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FIG. 2 (color online). (a) N=T and (b) S=�
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T

p
_�� vs � for

various 
. The open and filled symbols represent the data outside
and within the bottom boundary, respectively. The lines show
(a) f1��� and (b) f2���.
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data are for the system with the depth H � 50 and BC1,
but the data for BC2 and those for H � 100 are also shown
for 
 � 20� for comparison. The data are given in the unit
system where the length �, the mass m, and the time

���������
�=g

p
are unities. One can see that the packing fraction in the
bulk does not depend on the depth, and the effects of the
boundary condition are confined within the boundary layer
and the bulk properties are independent. Figure 1(c) shows
that @yq is much smaller than S _� in the bulk, which is
consistent with our argument to derive Eq. (9); the heat flux
q is estimated by the constitutive relation in Ref. [13]. The
plots of T= _�2 in the inset shows that Eq. (9) holds
approximately.

We compare our data with the constitutive relations
derived by Jenkins and Richman [13] for two-dimensional
inelastic hard disks. The functions f1���, f2���, and f3���
in the steady flow are given in Table I. We adopt the radial
distribution function g0��� from Ref. [14]

g0��� � gc��� 

gf��� � gc���

1
 exp����� �0�=m0�
; (11)

wheregc�����1�7�=16��1����2 andgf������1
ep��

��
�����������
�c=�

p
�1���1 with �c � 0:82, �0 � 0:7006, and

m0 � 0:0111.
In f2��� and f3���, the rotational temperature ~T �

Ih�w�!�2i appears as ~T=T, where w is the particle an-
gular velocity and ! � hwi: In the kinetic theory, ! is
simply assumed to be �r � v�z=2 [13], which holds except
for the region near the bottom boundary [15]. ~T=T be-
comes constant in the kinetic theory [13]; the value should
be 1 for our parameters, but is not in the simulations. This
should be mainly due to the Coulomb friction, which has
strong effects on particle rotations. In Fig. 1(b), ~T’s are
plotted with symbols along with T’s (lines): ~T’s are divided
by factors that give the best fits of ~T’s with T’s. We see ~T’s
fit with T’s in the bulk region with the factor around 0:5,
but the ratio depends on 
. In the following, we try both
~T=T � 1 and the values obtained from the simulations for
~T=T in f2��� and f3���.

First, we examine Eqs. (4) and (5). Figure 2 shows the
simulation data of (a) N=T and (b) S=� _�

����
T

p
� against � with

symbols. The data from the bottom layers (y � 10) are
distinguished by filled symbols because they follow a
different trend. The data outside the bottom layers (y >
10, open symbols) for various 
 collapse onto a single line.
This clearly shows that the expressions (4) and (5) in the
kinetic theory are valid outside the bottom layers. The data
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from the bottom layers show some scatter and a different
tendency between BC1 and BC2.

f1��� and f2��� in Table I with ~T=T � 1 are shown by
the solid lines in Figs. 2(a) and 2(b), respectively, and they
agree with the data. f2��� depends on ~T=T only weakly and
the difference turned out to be negligibly small in the range
0:5 & ~T=T & 1.

Now, we examine f3��� in Eq. (6). In Fig. 3(a), we plot
S _�=T3=2 against � from the data; this quantity should give
f3��� from Eqs. (9) and (4). Only the data from the bulk
(15< y< 35) are plotted because Eq. (9) is valid only in
the bulk as we have already seen in Fig. 1(c). The lines
show f3��� from kinetic theory with various ~T=T. f3���
depends on ~T=T, but the data agree reasonably well with
f3��� when ~T=T � 0:5. Note, however, that the singularity
at � � �c is weaker in the simulation data than in f3���.

This difference in f3��� is significant when we see them
in the bulk density. In Fig. 3(b), the bulk density � is
plotted against the inclination angle 
 for the simulation
data and for the kinetic theory; for the latter, we plot����������������������
f2���f3���

p
=f1���, which should give tan
 from

Eq. (10). The bulk density decreases as 
 increases in the
simulation, but

����������������������
f2���f3���

p
=f1��� shows the opposite ten-
1-3
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dency; the density increases as 
 increases. This discrep-
ancy comes mainly from the discrepancy in f3���, more
specifically from the fact that the data show a weaker
divergence in f3���, while the kinetic theory assumes the
same singularity in all of f1���, f2���, and f3��� near the
random closed packing.

Some parts of the discrepancy might originate from the
Coulomb friction, because it is included in the simulation
and should have some effects on energy dissipation, but not
taken into account in the existing two-dimensional theo-
ries. The existing three-dimensional theory [7], however,
suggests that the way it changes f3��� is just to modify the
coefficient of �2g0��� as long as the level of approximation
remains the same. Such a change is not enough to make the
singularity in f3��� weaker.

It is a bit puzzling to find a clear deviation from the
kinetic theory in the energy dissipation while the stresses
agree quite well. A possible origin of this is the velocity
correlation induced by the inelasticity, which could violate
the molecular chaos assumption in the kinetic theory. The
decrease of the relative velocity tends to reduce the energy
loss per collision. This effect has been noticed in some
granular gas simulations, where the energy loss rate is
found to be more sensitive to the velocity correlation
than stresses [16]. Careful analysis of the velocity correla-
tion in dense flow is awaited.

Before concluding, let us make some comments on
Pouliquen’s flow rule [3]: The average flow velocity scales
u�H�=

�������
gH

p
� bH=Hstop�
� with Hstop�
� being the depth

of the flow below which the flow stops for a given incli-
nation angle 
, and a numerical constant b about 0:136.
Ertaş and Halsey [17] argued that the appearance of
Hstop�
� in the expression of flow velocity for the depth
H, which can be much larger than Hstop�
�, implies that the
rheology of the dense gravitational flow is not local, and
have proposed the eddy mechanism. If the flow is con-
trolled by a nonlocal mechanism, there is no way that the
kinetic theory holds. The Pouliquen flow rule, however,
does not necessarily mean a nonlocal mechanism, but it
simply means the stopping depth is determined by some
aspects of the flowing rheology. We do not know yet how it
12800
is determined, but the present results suggest that the
kinetic theory may well be a good starting point to describe
the flow.

In summary, by careful analysis of the simulation data,
we have demonstrated that the rheology of gravitational
dense granular flow can be described within the framework
of kinetic theory. Especially, the constitutive relations
based on the kinetic theory have been shown to agree
quantitatively with the simulations, but there is a slight
discrepancy in the energy dissipation. Because of this
discrepancy, the kinetic theory fails to give a correct de-
scription of the density plateau of the granular flow down a
slope.
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