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Chain Entanglement in Thin Freestanding Polymer Films
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When a thin glassy film is strained uniaxially, a shear deformation zone (SDZ) can be observed. The
ratio of the thickness of the SDZ to that of the undeformed film is related to the maximum extension ratio,
A, which depends on the entanglement molecular weight, M,. We have measured A as a function of film
thickness in strained freestanding films of polystyrene as a probe of M, in confinement. It is found that
thin films stretch further than thick films before failure, consistent with the interpretation that polymers in
thin films are less entangled than bulk polymers, thus the effective value of M, in thin films is significantly
larger than that of the bulk. Our results are well described by a conceptually simple model based on the
probability of finding intermolecular entanglements near an interface.
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How polymers are influenced in confined systems has
been a main focus of polymer science—especially now
that systems with very small dimensions are becoming
easier to manufacture. In the bulk melt state, polymers
are considered ideal Gaussian chains which represent ran-
dom walks with a length scale dependent on the molecular
weight, M, of the polymer [1]. A natural length scale for
ideal chains is the root-mean-squared end-to-end distance,
R,, ~ M'/2. A qualitative picture of the polymer melt is
that a polymer chain explores a pervaded volume, V, ~
R>,, due to random thermal motions. Within this same
volume there are many other polymers and many interac-
tions between a specific polymer chain and other chains. A
fraction of these interactions restrict the mobility of a
polymer chain resulting in entanglements, which can be
thought of as knots or crossings in the system. Entangle-
ments are at the root of many remarkable polymeric prop-
erties like very high melt viscosities, transient rubberlike
behavior, and toughness [1].

The nature of entanglements in confined systems is not
yet understood and we must be careful to distinguish
between the idea of chain overlap and chain entanglement.
This is most easily understood from a discussion of thin
films which originates in the text of de Gennes (p. 61 of
Ref. [1]). A nonadsorbing interface can be approximated as
a reflective boundary [2], which implies that the ideal
chains are only perturbed in the direction normal to the
interface (i.e., the random walk is unperturbed in the plane
of the film). The weak perturbation of chain dimensions in
the lateral direction has been validated by Miiller [3] and
Vacatello [4] with Monte Carlo simulations and experi-
mentally by Jones and co-workers [5]. As the thickness of
the film, &, is decreased below the length scale of the
molecule, 7 < R,,, the volume pervaded by a single
molecule decreases, while the overall monomer density
remains constant. With increasing confinement, segments
belonging to other chains are increasingly excluded from
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the pervaded volume, resulting in a reduced interchain
entanglement density, while the total entanglement density
remains constant.

Though the exact conformations that represent entangle-
ments are not known, the statistical nature of entangle-
ments in bulk systems is very well explained by chain
packing models [6—8]. In such models the entanglement
molecular weight, M,, is defined through the ratio of the
pervaded volume of a chain, V,, to the volume occupied by
that chain, V.. The volumes can be expressed as V), =
AR3, = A(M/m)*2a® and V. = (M/m)a?, where A is a
constant of order 1, m is the mass of a monomer, and a is a
length associated with the monomer. The argument made
in the chain packing models is that an entanglement occurs
when M is such that ~2 chains exist in the same pervaded
volume (the precise value of this number varies depending
on the details of the model). As chains get larger, they
interact with more other chains, thus M, corresponds to
some ratio of V,,/V, ~ 2. Though it is not explicitly stated
in these models, we note that an entanglement is then
defined through interactions with other chains—i.e.,
through interchain entanglements. In the bulk this repre-
sents a subtle and minor detail, but in confinement the
situation is different.

Consider a polymer chain of mass 2M,. This chain could
be confined to the pervaded volume that would be occupied
in the bulk by a chain of mass M,. Thus a chain that was
well-entangled in the bulk would, in this confined situation,
be only marginally entangled with other chains. Yet the
total number of entanglements as defined by packing
models remains constant; what in the bulk are interchain
entanglements are converted in confinement to self-
entanglements. The conclusion to be drawn from this argu-
ment is that to a first approximation, the total entanglement
density, v ~ 1/M,, which is made up of the sum of the
self-entanglements and interchain entanglements, remains
constant. It is the fraction of self-entanglements that in-
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creases in a confined system because the pervaded volume
is smaller in confinement than in the bulk. The ideas
presented here are an extension of the packing models to
confined geometries, and in spirit similar to models pre-
sented to describe entanglements near an interface [9] and
the overlap between chains in a thin film [1].

When strain is applied to a polymer glass, failure can
occur though crazing (small nanoscopic voids which form
in polymeric glasses under strain) [10—16]. In thin films a
shear deformation zone (SDZ) can be observed rather than
a craze. The SDZ is a thinning or neck that forms in the
film. The SDZ appears qualitatively different from a craze
observed in bulk systems because the constraint in the
normal direction of a film is relaxed [10,11,13—-15]. The
extension ratio, A, is an important property of a craze or
SDZ and is the ratio of the width of the material that went
into forming the deformation to the width of the deformed
region after an applied strain. Many of the details regarding
crazing and shear deformation are well understood due to
the pioneering work by Kramer and co-workers. Donald
and Kramer found that by mixing two miscible polymers
with different entanglement molecular weights, it was
possible to vary M, systematically, resulting in corre-
sponding changes in A [12]. These experiments proved
conclusively the link between M, and A. Donald and
Kramer found the results to agree quantitatively with
what was expected from a model based on the distance
between two entanglement points prior to and after defor-
mation (see [12] and the reviews [13,14]). Rottler and
Robbins also established this link between M, and A using
simulations [16].

In this Letter we present a study which makes use of the
fact that the extension ratio can be used as a relatively large
scale observable to probe the molecular geometry of en-
tanglements, A> ~ M, [12-14,16]. Measurements of A
were performed in thin freestanding films (membranes)
of polystyrene (PS). We found that by measuring A it
was possible to infer that the effective entanglement mo-
lecular weight M increases as the film thickness, A, is
decreased. Furthermore, a model based on chain packing
[6-9] is presented which is in remarkable agreement with
the experiments.

Thin PS films with thicknesses ranging from 30 nm to
650 nm were spincast out of toluene onto freshly cleaved
mica. Three molecular weights of PS (Polymer Source
Inc., Canada) were used and measured to be 623, 828,
and 1062 kg/mol (the polydispersity index was less than
1.1 for all three). The Mica-PS samples were annealed at
115 °C at a pressure of ~107° Torr for 12 h to remove
residual stress and solvent in the film. The samples were
cooled to room temperature at a rate of ~1 °C/ min. The
film, cut into small pieces, was floated onto a clean water
(Milli-Q) surface and a section picked up with a two part
stainless steel sample holder with a 1.5 mm gap. The
sample was then dried in a clean air environment and
attached over an inverted microscope with one side fixed
and the other attached to a computer controlled translation

stage (Newport MFN25CC, ESP300). For all the results
presented, the translation stage velocity was 0.3 uwm/s
resulting in a strain rate of 2 X 107* s~! and the final
gap was 1.8 mm. After the strain was applied, the sample
and sample holder were removed from the microscope and
placed onto a cleaned Si wafer while still under tension.
The surface forces pull the sample onto the Si substrate and
stabilize the film [see Fig. 1(a)]. The width of the neck (of
order ~10 wm) is much greater than the thickness of the
neck (of order ~10 nm), such that a transfer to Si results in
the neck being in contact with the Si. This fact could be
verified by atomic force microscopy (AFM) as well as
optical microscopy.

Figure 1(b) is representative of the measurements that
were performed. A scratch was made in the film such that
an AFM scan could simultaneously be used to measure
both the height of the film / and the depth of the neck d.
For each film a measure of the ratio of the neck thickness to
the film thickness was obtained by averaging several scan
lines on at least 5 AFM images at different locations along
the neck. Figure 2 is a plot of the ratio /. /h as a function of
h for all three molecular weights. It is clear that a constant
value of h./h is obtained for thick films which is equiva-
lent for all values of M. However, as the film thickness is
decreased below ~100 nm, there is a significant decrease
in h./h. Furthermore, the decrease in h./h is monotonic
and the effect is shifted to thinner films for smaller poly-
mers—a clear indication that chain confinement effects
are important.

Figure 3 shows a diagram of a polymer chain in a neck
prior to and after a strain. The theoretical maximum value
of A is the ratio of the distance between two entanglement
points for ideal Gaussian chains before and after a strain,
A~1,/d ~ M,/NNM ~ \/JM,e. The validity of this model
has been well tested experimentally by Donald and Kramer
[12—14] and using simulations by Rottler and Robbins
[16]. If we make the assumption that the density of material
in the neck and in the film is equivalent (conserved vol-
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FIG. 1. (a) A freestanding membrane that has been strained is
transferred to a Si substrate. (b) AFM is used to scan the sample
in order to measure the thickness of the film and the deformed
neck. The image is 25 um X 25 pum wide; z range is 140 nm.
The scan lines are averaged in a region (white bar) that simul-
taneously shows the substrate, film, and neck.
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FIG. 2. Plot of the ratio of the neck thickness to the film
thickness, h./h, as a function of & for three molecular weights.
In the inset the data are replotted as the normalized value of the
effective entanglement molecular weight, M¢/M ,(bulk).

ume), then h./h = 1/A ~1//M, [17]. Applying this re-
lationship to the case of thin films, it is possible to obtain
the effective entanglement molecular weight, M ;. In the
inset of Fig. 2 we plot M., normalized to the bulk as a
function of A. The effective entanglement molecular weight
in the thinnest films is greater by a factor of ~2. Simply
stated, a thin film will stretch further than a thick film
before failure because the network is more loosely
entangled.

The results presented thus far can be understood from a
simple model, which represents a first approximation to a
complex problem. The model first of all requires the as-
sumption that self-entanglements and interchain entangle-
ments do not contribute equally to the integrity of the
network for these strain experiments. Certainly in the limit
of very thin films, where there is no chain overlap and
hence only self-entanglements, the network must be very
fragile. As discussed above, we also assume that the total
entanglement density remains constant and that it is the
fraction of self-entanglements that increases near an inter-
face. We can then write the effective entanglement density
as Veip = VPiner = v(1 — Pgyr), Where Py, i the proba-
bility of finding interchain entanglements and P is the
probability of self-entanglements. In Fig. 4(a) we show a
schematic of a thin film. A chain near the interface is
perturbed as it is reflected by the boundary [2]. If a chain’s
pervaded volume in confinement were half that of an
unperturbed chain, then the probability of a self-
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FIG. 3. Diagram of the Gaussian chain between two entangle-
ment points before and after an applied strain.

[,—

entanglement would be 2P, where P represents the proba-
bility of a self-entanglement occurring in unperturbed
chains. Thus

Vot = ,,(1 - P—>, (1)

where V), is the average volume pervaded by a “bulk”
chain (unperturbed) and V,, is the volume pervaded by a
chain in general (i.e., in the bulk V,, = V;, but at an inter-
face V, is reduced to the portion of the sphere that is within
the film). For unperturbed bulk chains we define V, =
47R3 /3, where the radius of the unperturbed chain volume
is R = cR,,, and c is a constant. It is expected that since
R,, is a natural length scale for the size of the polymer that
c~ 1.

In order to calculate the effective entanglement density
in the film we assume that we can average Eq. (1) over the
film thickness 4. This is an approximation; in reality we
expect that v would be less near an interface and tend
towards the bulk value away from an interface (a similar
idea is explored in [9]). From Eq. (1)
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We define the dimensionless film thickness H = h/R
and solve Eq. (2) for three cases: h <R, R <h <2R,
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FIG. 4. (a) Diagram of a polymer chain in a film. The pervaded
volume of a chain is reduced near an interface. (b) Plot of the
normalized film-averaged effective entanglement density vs the
inverse film thickness (the plot is for P = 0.05; similar results
are obtained for other values of P).
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FIG. 5. Plot of the experimentally obtained value of (h./h)* as

a function of the dimensionless ratio R,,/h for three molecular
weights. According to the model (h,./h)?> ~ (v [see Fig. 4(b)].

and h > 2R:
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In Fig. 4(b) the calculated value of (v.) is plotted as a
function of 1/H. Clearly there are two regimes that are
nearly linear in 1/H. For thick films only the interfacial
region is affected, resulting in a linear dependence of (v )
on 1/H. As the films get thinner, polymer chains interact
with both interfaces and the effect on (v.g) becomes more
severe. A direct comparison to the data is possible through
the crossover point at H ~ 1, as well as the contrast in the
slopes of the two regimes ~2.2 [18].

Recalling that v ~ (h./h)?, we show the data plotted
as (h./h)?* versus R,,/h in Fig. 5 (the scaling predicted by
the model). The agreement between the model and the data
is excellent: (1) the data clearly break up into two nearly
linear regimes for all values of M studied; (2) all three
molecular weights collapse as suggested by the model
(1/H = R/h = cR,,/h); (3) the contrast in the slope of
the two linear regimes is ~2.7 while the model value is
~2.2; and (4) from the crossover of the two regimes, it is
found that the pervaded volume of a polymer chain is R ~
R,./1.3 (note that the size of the pervaded volume is what
one might reasonably expect, R = cR,,, ¢ ~ 1).

The results presented are the first measurements that
probe polymer entanglement in confined systems. We can

conclude with confidence that thin films respond to a strain
that is consistent with a network with an entanglement
density that is significantly reduced. The model, which is
in agreement with the data, is a simple geometrical exten-
sion of ideas based on chain packing [6—8], coupled with
predictions that there is reduced chain overlap near inter-
faces [1,9]. The model is a first approximation to a very
complex problem which may provide a starting point for
more rigorous treatments. If we accept the model, then the
following conclusions can be drawn: (1) we must distin-
guish between self-entanglements and interchain entangle-
ments; (2) the total entanglement density is constant, but
the proportion of self-entanglements increases near inter-
faces; and (3) the results provide a measure of the pervaded
volume of a polymer chain.
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