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Low- and High-Frequency Noise from Coherent Two-Level Systems
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Recent experiments indicate a connection between the low- and high-frequency noises affecting
superconducting quantum systems. We explore the possibilities that both noises can be produced by
one ensemble of microscopic modes, made up, e.g., by sufficiently coherent two-level systems (TLS’s).
This implies a relation between the noise power in different frequency domains, which depends on the
distribution of the parameters of the TLS’s. We show that a distribution, natural for tunneling TLS’s, with
a log-uniform distribution in the tunnel splitting and linear distribution in the bias, accounts for
experimental observations.
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Recent activities and progress with quantum information
systems rely on the control of decoherence processes and at
the same time provide novel tools to study their mecha-
nisms. Experiments with superconducting qubits revealed
the presence of spurious quantum two-level systems
(TLS’s) [1] with strong effects on the high-frequency
(�10 GHz) qubit dynamics. Other experiments [2] sug-
gested a connection between the strengths of the Ohmic
high-frequency noise, responsible for the relaxation of the
qubit (T1 decay), and the low-frequency 1=f noise, which
dominates the dephasing (T2 decay). The noise power
spectra, extrapolated from the low- and high-frequency
sides, cross at ! of order T. This is also compatible with
the T2 dependence of the low-frequency part, observed
earlier for the 1=f noise in Josephson devices [3,4].
Much clearer evidence for the T2 behavior was obtained
recently [5,6].

In this Letter we point out that a set of coherent two-
level systems (or, in fact, arbitrary quantum systems with
discrete spectrum) produces both high- and low-frequency
noise with strengths that are naturally related. We show
that for a realistic distribution of parameters tunnel TLS’s
(TTLS’s) produce noise with experimentally detected fea-
tures: the 1=f behavior at low frequencies, the Ohmic
(/ !) high-frequency noise, and the T2 temperature de-
pendence of the integrated weight of the low-frequency
noise. This implies that the 1=f and Ohmic asymptotes
cross at !� T as was indeed observed in Ref. [2] at one
value of T. The distribution is log uniform in the tunnel
splitting and linear in the bias. Microscopically, this dis-
tribution may describe double traps or ‘‘Andreev fluctua-
tors’’ considered recently by Faoro et al. [7] in their study
of the relaxation (T1 decay) of Josephson qubits due to the
high-frequency noise. Our results are obtained for environ-
ments with a large number of TLS’s which are weakly
coupled to the qubit. A strong coupling between a TLS and
a qubit can lead to resonances [1,2].

Ensembles of TLS’s were discussed extensively in the
literature. On one hand, they produce a natural model of
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1=f noise, as a result of incoherent random transitions [8],
and there is substantial experimental evidence that the low-
frequency 1=f noise in single-electron devices may be
produced by TLS’s [9,10]. In solid-state qubits, e.g.,
Josephson qubits, the pure dephasing is dominated by
this noise [11–13]. On the other hand, ensembles of coher-
ent TTLS’s were suggested to explain low-temperature
properties of glasses [14,15]. Both ‘‘transverse’’ and ‘‘lon-
gitudinal’’ couplings to the TLS’s, defined below, were
discussed in relation to various physical phenomena. A
transverse coupling of phonons or electrons to the TLS’s
is responsible for the absorption and emission of energy. It
was invoked in the discussions of, e.g., the phonon attenu-
ation [16] and of the low-temperature dephasing in disor-
dered metals [17]. On the other hand, a longitudinal
coupling to the TLS’s was found to be responsible, e.g.,
for the conductance fluctuations [18–20]. We suggest that
in nanocircuits, e.g., solid-state qubits, both types of cou-
plings play an important part and produce noise with
related properties in various frequency ranges.

As a model we consider a set of coherent two-level
systems described by the Pauli matrices �p;j, where p �

x; y; z and j is the index of a particular TLS. We write the
Hamiltonian of the set in the basis defined by their con-
tributions to the relevant fluctuating quantity [cf. Eq. (2)
below];

HTLS �
X
j

�
�

1

2
�"j�z;j � 
j�x;j� �Hdiss;j

�
: (1)

Here, in the language of TTLS’s, "j are the bias energies
and 
j are the tunnel amplitudes between two states. Each
TLS with label j is subject to dissipation due to its own
bath with Hamiltonian Hdiss;j. We do not specify Hdiss;j but
only assume that it produces the usual relaxation (T1) and
dephasing (T2) processes. We assume that all the TLSs are
underdamped, with �1;j � T

�1
1;j 	 Ej and �2;j � T

�1
2;j 	

Ej. Here Ej �
�����������������
�2j � 
2

j

q
is the energy splitting.
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Each TLS in the ensemble contributes to fluctuations of
a physical quantity X, e.g., the gate charge, which affect an
experimentally accessible system and thus may be de-
tected. A qubit may serve as a convenient noise detector
[21,22]. For example, in the recent experiment of Ref. [2]
qubits were used to investigate the properties of their
environment. We choose

X �
X
j

vj�z;j; (2)

where vj are the coupling constants and �z;j � 
1 corre-
spond to the two states differing, e.g., by the value of the
dipole moment. The interaction of the qubit with the TLS’s
is often described via a linear in X coupling to a variable
Oqubit of the qubit, i.e., Hint�X� / XOqubit.

Our goal in the following is to investigate the noise
properties of X; that is, we need to evaluate the (unsymme-
trized) correlator

CX�!� �
Z
dtfhX�t�X�0�i � hXi2gei!t: (3)

For independent TLSs the noise is a sum of individual
contributions, CX �

P
jv

2
jCj, where

Cj�!� �
Z
dtfh�z;j�t��z;j�0�i � h�z;ji2gei!t: (4)

To obtain Cj we first transform to the eigenbasis of the
TLS. This gives

HTLS �
X
j

�
�
1

2
Ej�z;j �Hdiss;j

	
; (5)

and

X �
X
j

vj�cos�j�z;j � sin�j�x;j�; (6)

where tan�j � 
j=�j. The first term of (6) produces the
longitudinal coupling to the TLS’s (mentioned above),
while the second term produces the transverse one. Using
the Bloch-Redfield theory [23,24] we find readily

Cj�!� � cos2�j�1� h�z;ji
2�

2�1;j

�2
1;j �!

2

� sin2�j

�
1� h�z;ji

2

�
2�2;j

�2
2;j � �!� Ej�

2

� sin2�j

�
1� h�z;ji

2

�
2�2;j

�2
2;j � �!� Ej�2

: (7)

In thermal equilibrium h�z;ji � tanh�Ej=2T�. The first
term, due to the longitudinal part of the coupling, describes
random telegraph noise of a thermally excited TLS. We
have assumed �1;j 	 T, so that this term is symmetric
(classical). The second term is due to the transverse cou-
pling and describes absorption by the TLS, while the third
12700
term describes the transitions of the TLS with emission.
We observe that TLS’s with Ej � T contribute to CX only
at (positive) ! � Ej. Indeed their contribution at ! � 0 is
suppressed by the thermal factor 1� h�z;ji

2 �

1� tanh2�Ej=2T�. Also the negative frequency (emission)
contribution at! � �Ej is suppressed. These high-energy
TLS’s remain always in their ground state. Only the TLS’s
with Ej < T are thermally excited, performing real random
transitions between their two eigenstates, and contribute
both at ! � 
Ej and at ! � 0. Such a multipeaked struc-
ture of Cj�!� was recently discussed in various contexts,
e.g., in Refs. [25–27]. Note that the separation of the terms
in Eq. (7) into low- and high-frequency noises is mean-
ingful provided the typical width �1;j of the low-!
Lorentzians is lower than the high frequencies of interest,
which are defined, e.g., by the qubit’s level splitting or
temperature.

For a dense distribution of the parameters �, 
, and v,
we can evaluate the low- and high-frequency noises. For
positive high frequencies, !� T, we obtain

CX�!��
X
j

v2j sin
2�j

2�2;j

�2
2;j��!�Ej�

2

�N
Z
d�d
dvP��;
;v�v2 sin2�2���!�E�; (8)

where N is the number of fluctuators, P��;
; v� is the
distribution function normalized to 1, E �

�����������������
�2 � 
2

p
,

and tan� � 
=�. Without loss of generality we take � �
0 and 
 � 0. At negative high frequencies (!< 0 and
j!j> T) the correlator CX�!� is exponentially suppressed.

On the other hand, the total weight of the low-frequency
(up to !� �1;max) noise follows from the first term of (7).
Each Lorentzian contributes 1. Thus we obtain

Z
lowfreq:

d!
2�
CX�!��

Z
lowfreq:

d!
2�

X
j

v2j cos
2�j�1�h�z;ji

2�

�
2�1;j

�2
1;j�!

2

�N
Z
d�d
dvP��;
;v�v2

�cos2�
1

cosh2 E2T
: (9)

In this Letter we consider only coherent TLS’s, i.e., we
assume that the maximum relaxation rate �1;max is smaller
than the minimum energy splitting Emin of the TLS’s. Thus
the last two terms of (7) do not contribute to (9). The
contribution of overdamped TLS’s will be discussed else-
where. Equations (8) and (9) provide the general frame-
work for further discussion.

Next we investigate possible distributions for the pa-
rameters �, 
, and v. We consider a log-uniform distribu-
tion of tunnel splittings 
, with density P
�
� / 1=
 in a
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range �
min;
max�. This distribution is natural for TTLS’s
as 
 is an exponential function of an almost uniformly
distributed parameter, e.g., tunnel barrier height [15]. It is
also well-known to provide for the 1=f behavior of the
low-frequency noise [8]: the relaxation rates are, then, also
distributed log uniformly, P�1

��1� / 1=�1, and a sum of
many Lorentzians of width �1 centered at! � 0 adds up to
the 1=f noise. We further assume that the distribution of v
is uncorrelated with " and 
.

First, we assume that the temperature is lower than 
max,
T <
max. For the high-frequency part, T <!< 
max,
taking the integral over 
 in Eq. (8), we find that

CX�!� /
1

!

Z !

0
P"�"�d": (10)

This is consistent with an Ohmic behavior CX / ! only for
the linear density P"�"� / ".

Importantly, this distribution P�";
� / "=
 leads at the
same time to the T2 ln�T=
min� behavior of the low-
frequency weight (9), consistent with experimental obser-
vations [3–6]. If the low-frequency noise has a 1=f depen-
dence, the two parts of the spectrum would cross around
!� T [2].

A remark is in order concerning this crossing. It is not
guaranteed that the spectrum has a 1=f dependence up to
!� T. Rather the high-frequency cutoff of the low-
frequency 1=f noise is given by the maximum relaxation
rate of the TLS’s, �1;max 	 T, as we assumed. Then the
extrapolations of the low-frequency 1=f and high-
frequency Ohmic spectra cross at this !� T.

To fix the coefficients, we introduce the normalization
constant A, so that P��;
� � A�=
. Then, at high positive
frequencies, T <!< 
max, we obtain

CX�!� � �hv2iNA!: (11)

For the total weight of the low-frequency noise we obtain

Z
low freq:

d!
2�
CX�!� � 4 ln�2�hv2iNAT2

2
4ln

T

min

3
5: (12)

Thus we obtain a numerical factor which determines pre-
cisely the point of crossing of the two spectra.

In the opposite limit, T � 
max, the high-frequency
noise depends on the detailed shape of the cutoff of
P
�
� at 
max. As an example, for a hard cutoff the
Ohmic spectral density implies that P" / "3, and the
low-frequency weight scales with T4. For a 1=f low-
frequency behavior, the spectra would cross at !�
T2=
max � T, in disagreement with the result of Ref. [2].

Interestingly, the linear ! dependence at high frequen-
cies and the T2 dependence of the low-frequency noise can
be obtained from a whole class of distributions, e.g., for
P��;
� � f��=
�, with arbitrary, not too divergent (as a
function of �) function f. Presented as a function of energy
12700
E and angle �, it becomes (we have used the Jacobian
d�d
 ! EdEd�)

P�E; �� � Ef�cot��; (13)

i.e., it is linear in E. This linearity ensures both the linear!
dependence at high frequencies and the T2 dependence of
the integrated weight of the low-frequency noise.

In particular, one can take P��;
� / ��=
�s with any
exponent s satisfying �1 � s � 1, and with both 
max and
�max higher than the relevant frequency !. This includes a
uniform distribution of both 
 and � at all relevant ener-
gies, i.e., s � 0. For ensembles with �1< s < 1, includ-
ing the uniform distribution with s � 0, high- and low-
frequency noises are created by the same fluctuators. On
the other hand, s � 1 is the limiting case in which the low-
frequency noise is dominated by the fluctuators with �	
1, while the high-frequency noise by all other fluctuators.
Yet, even in this case the strengths of the high- and low-
frequency parts of the spectrum are related.

For the uniform distribution (s � 0) we obtain different
numerical coefficients. We introduce an experimentally
accessible constant #, such that CX�!� T� � 2�#!.
Then, for s � 1 (P / �=
) we obtain from Eqs. (11) and
(12) that the total weight of the low-frequency noise is
given by

R
low freq:

d!
2� CX�!� � 8 ln�2�#T2 ln�T=
min�. On

the other hand, for the uniform distribution, s � 0, we
obtain

R
low freq:

d!
2� CX�!� � 4 ln�2�#T2.

We emphasize that the relation between low- and high-
frequency noises is more general; i.e., it is not unique to an
ensemble of two-level systems. Consider an ensemble of
many-level systems with levels jni and energies En such
that the coupling is via an observable which has both
transverse and longitudinal components. By a transverse
component we mean the part constructed with operators
jnihmj, where n � m, while the longitudinal component is
built from the projectors jnihnj. If the system is under-
damped, that is, if the absorption and emission lines are
well defined, the correlator of such an observable will have
(Lorentzian-like) contributions at ! � En � Em as well as
at! � 0. As an example we could consider an ensemble of
anharmonic oscillators with X �

P
jvjxj, where xj are the

oscillator’s coordinates. Because of the anharmonicity xj
acquires a longitudinal component, in addition to the usual
transverse one. Thus a relation between the low- and high-
frequency noises would emerge naturally with details de-
pending on the ensemble statistics.

It is useful to relate our phenomenological results to the
recent work of Faoro et al. [7], where they considered
physical models of the fluctuators, which could couple to
and relax qubits. They considered three models: (I) a
single-electron trap in tunnel contact with a metallic
gate, (II) a single electron occupying a double trap, and
(III) a double trap that can absorb or emit a Cooper pair
from the qubit or a superconducting gate. In all models a
uniform distribution of the trap energy levels was assumed.
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One, then, can show that the distribution for the two-level
systems corresponding to the models II and III are linear in
the energy level splitting, P��� / �. Since the switching
in these models is tunneling dominated, we find that
P�
� / 1=
. Therefore, both models II and III are char-
acterized by distribution P��;
� � A�=
, described
above, and hence can naturally account for the experimen-
tally observed low- and high-frequency noises. In contrast,
in the model of uniformly distributed single-electron traps
(model I), we find that for small tunnel rates, the high-
frequency noise is inversely proportional to frequency
rather than Ohmic [7].

In this Letter we did not address the question of the
statistics of the low-frequency noise nor the associated
problem of a particular decay law of the dephasing process.
These statistics will depend on the distribution of the
coupling strengths vj. For certain distributions the individ-
ual strongly coupled fluctuators may be important [28,29],
and the statistics is non-Gaussian. For ensembles of many
weakly coupled fluctuators Gaussian statistics emerges
[11,30].

To conclude, we have shown that an ensemble of coher-
ent two-level systems with the distribution function,
P��;
� / �=
, produces Ohmic high-frequency noise
and, at the same time, 1=f low-frequency noise with
strength which grows with temperature as T2. The two
branches of the noise power cross at !� T in accordance
with the experimental observation [2]. A relation between
low- and high-frequency parts of the spectrum is a general
property of ensembles of coherent systems with discrete
energy levels.
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