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Observation of Feshbach-Like Resonances in Collisions between Ultracold Molecules
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We observe magnetically tuned collision resonances for ultracold Cs2 molecules stored in a CO2-laser
trap. By magnetically levitating the molecules against gravity, we precisely measure their magnetic
moment. We find an avoided level crossing which allows us to transfer the molecules into another state. In
the new state, two Feshbach-like collision resonances show up as strong inelastic loss features. We
interpret these resonances as being induced by Cs4 bound states near the molecular scattering continuum.
The tunability of the interactions between molecules opens up novel applications such as controlled
chemical reactions and synthesis of ultracold complex molecules.
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FIG. 1. Molecular energy structure below the scattering con-
tinuum of two cesium atoms in the jF � 3; mF � 3i state. The
energy of the dissociation threshold corresponds to Eb � 0. The
arrows mark the paths to the molecular states we explore, which
include the creation of the molecules in j�i via the atomic
Feshbach resonance at 19.84 G [1,19] and an avoided crossing
to j	i at �13:6 G. Included are only molecular states which can
couple to the continuum via Feshbach couplings up to g-wave
interaction (l � 4, mf �ml � 6 and mf � 2).
The synthesis of ultracold molecules from ultracold
atoms has opened up new possibilities for studies on
molecular matter waves [1–3], strongly interacting super-
fluids [4], high-precision molecular spectroscopy [5] and
coherent molecular optics [6]. In all these experiments,
control of the interatomic interaction by magnetic fields
plays an essential role in the association process. When a
two-atom bound state is magnetically tuned near the quan-
tum state of two scattering atoms, coupling from the
atomic to the molecular state can be resonantly enhanced.
This is commonly referred to as a Feshbach resonance [7].

The success in controlling the interaction of ultracold
atoms raises the question whether a similar level of control
can be achieved for ultracold molecules. Resonant inter-
actions between molecules may lead to synthesis of com-
plex objects beyond atomic dimers. Furthermore,
scattering processes for molecules involve many novel
reactive channels in comparison to the atomic counterpart,
e.g., collision induced dissociation, rearrangement, or dis-
placement chemical reactions. Magnetic tunability of the
molecular interactions, similar to that resulting from
atomic Feshbach resonances, will lead to exciting perspec-
tives for investigating these chemical processes in regimes
where quantum statistics and quantum coherence play an
important role.

In this Letter, we report the observation of magnetically
tuned collision resonances in an ultracold gas of Cs2 mole-
cules. The ultracold dimers are created from an atomic
Bose-Einstein condensate (BEC) by use of a Feshbach
ramp [1] and are trapped in a CO2-laser trap. We precisely
measure the magnetic moment of the molecules and ob-
serve an avoided crossing [8] which allows us to transfer
the molecules into another state. In the new state, we
discover two narrow inelastic collision resonances. The
resonance structure suggests that bound states of two ce-
sium molecules, or equivalently Cs4 states, induce the
resonant scattering of molecules. These resonances, which
we interpret as Feshbach resonances for ultracold mole-
cules, may open the door to the synthesis of more complex
molecules and to the control of their chemical reactions.
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The relevant molecular energy structure shown in Fig. 1
is based on calculations done at NIST [9,10]. The disso-
ciation threshold, providing the energy reference Eb � 0,
is associated with two Cs atoms in the lowest ground state
sublevel jF � 3; mF � 3i, where F and mF are the quan-
tum number of the atomic angular momentum and its
projection, respectively. As a result of the strong indirect
spin-spin interaction of Cs atoms [11], coupling to mo-
lecular states with large orbital angular momentum l � 4
[10,12] leads to the complexity of the energy structure
shown in Fig. 1. This type of coupling is generally referred
to as g-wave Feshbach coupling.
1-1  2005 The American Physical Society
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FIG. 2 (color online). Magnetic moment of the Cs2 molecules.
The measured magnetic moment (solid circles) is compared to
the NIST calculation (solid line). The fast change at �13:6 G is
associated with an avoided crossing. In the inset, we derive the
molecular binding energy (solid circles) by integrating the
measured magnetic moment. Binding energies from the NIST
calculation (solid lines) for both branches of the avoided cross-
ing between state j�i and state j	i are shown; see also Fig. 1.
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We create the molecules in the bound state j�i � jf �

4; mf � 4; l � 4; ml � 2i via g-wave Feshbach coupling
at 19.84 G [1]; see Fig. 1. Here, f is the internal angular
momentum of the molecule, and mf and ml are the pro-
jections of f and l, respectively. The molecular state j�i is
stable against spontaneous dissociation for magnetic fields
below 19.84 G and acquires larger binding energies at
lower magnetic fields. This is due to the small magnetic
momentum of �0:95
B of this state as compared to the
atomic scattering continuum with �1:5
B. At about 14 G,
an avoided crossing to another state j	i � jf � 6; mf �

6; l � 4; ml � 0i is induced by the indirect spin-spin cou-
pling. In this work, we ramp the magnetic field adiabati-
cally and explore the upper branch of the avoided crossing.

Our experiment starts with an essentially pure atomic
BEC with up to 2:2	 105 atoms in a crossed dipole trap
formed by two CO2 laser beams [13,14]. We apply a
magnetic field of 20 G, slightly above the Feshbach reso-
nance, and a magnetic field gradient of 31 G=cm to levitate
the atoms [15]. The CO2-laser trap is roughly spherically
symmetric with a trapping frequency of ! 
 2�	 20 Hz
and a trap depth of 7 
K. The atomic density is 6	
1013 cm�3 and the chemical potential is kB 	 20 nK,
where kB is Boltzmann’s constant.

To create the molecules, we first ramp the magnetic field
from 20.0 to 19.5 G in 8 ms and then quickly change the
field to 17 G to decouple the molecules from the atoms.
Simultaneously, we ramp the magnetic field gradient from
31 up to 50 G=cm. The latter field gradient levitates the
molecules [1] and removes all the atoms from the trap in
3 ms. As a consequence, we obtain a pure molecular
sample in the CO2-laser trap with typically 104 molecules.
The magnetic field ramping process also leads to a small
momentum kick on the molecules, which start oscillating
in the trap. After �100 ms, the oscillations are damped out
and the sample comes to a new equilibrium at a tempera-
ture of 250 nK with a peak density of 5	 1010 cm�3 and a
phase space density of 10�2 to 10�3. To measure the
molecule number, we dissociate the molecules into free
atoms by reversely ramping the magnetic field back above
the resonance to 21 G. We then image the resulting atoms
[1].

A key parameter for a perfect levitation of the Cs2
molecules is the precise value of their magnetic moment
[1]. The levitation field is crucial because the gravitational
force is much stronger than the trapping force of the CO2

lasers. In contrast to ground state atoms with only slow-
varying magnetic moment, the magnetic moment of the
molecules can sensitively depend on the magnetic field as a
result of the complex interactions between molecular
states; see Fig. 1. Therefore, the prerequisite to perform
Cs2 molecule experiments at different magnetic fields is
the knowledge of the molecular magnetic moment for an
accurate setting of the levitation field.

We map out the magnetic moment of the molecules over
the range of 11.5 to 19.8 G. This is realized by a two-step
12320
process: First, we slowly tune the magnetic field in 60 ms
to a desired value and find a corresponding magnetic field
gradient which can approximately keep the molecules near
the center of the CO2-laser trap. Second, after a hold time
of 500 ms needed for the ensemble to come to an equilib-
rium, we measure the position of the cloud. The location of
the molecular cloud provides a very sensitive probe to the
residual imbalance of the magnetic force and gravity.
Given a small vertical displacement of the molecules rela-
tive to the trap center �z for a local magnetic field B and a
field gradient B0, the magnetic moment is then 

B� �

2m!2�z� 2mg�=B0. Here 2m is the molecular mass, and
g is the gravitational acceleration. Independent measure-
ments based on releasing the molecules into free space [1]
confirm the accuracy of the above method to 0:01
B.

The measured magnetic moments of the molecules show
the expected behavior in the range of 11.5 to 19.8 G; see
Fig. 2. We find that the magnetic moment slowly decreases
from 0:98
B to 0:93
B as the magnetic field is lowered
from 19.8 G. For magnetic fields below �14 G, the mag-
netic moment quickly rises and levels off at 1:5
B. This
behavior is readily explained by the avoided crossing at
13.6 G (Figs. 1 and 2), which transfers the molecules from
state j�i with 
 
 0:9
B to j	i with 
 
 1:5
B. Below
11.5 G, a new avoided crossing to a very weakly coupled
l � 8 molecular state occurs [16]. We observe fast loss of
the molecules since our current apparatus cannot produce a
sufficient levitation field to support the molecules against
gravity in this new state.

Our measurement agrees excellently with the NIST
calculation [9,10] within the 200 mG uncertainty from
the multichannel calculation; see Fig. 2. We evaluate the
1-2
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molecular binding energy based on integrating the mea-
sured magnetic moments. Here the integration constant is
fixed by the fact that the molecular binding energy is zero
at the atomic Feshbach resonance B � 19:84 G. The result
shown in the inset of Fig. 2 gives very good agreement with
the theoretical calculation within the energy uncertainty of
0.25 MHz [9]. By fitting our binding energies to a simple
avoided crossing model, we determine the crossing to be
Bcross � 13:55
4� G and the coupling strength, half the
energy splitting between the two eigenstates at Bcross, to
be h	 150
10� kHz. Here h is Planck’s constant.

To investigate the interactions between molecules, we
measure the inelastic collision loss after a trapping time of
300 ms (Fig. 3). For molecules in state j�i (14 G<B<
19:8 G), the fractional loss is about �40%. In this molecu-
lar state, we do not see any strong magnetic field depen-
dence. When the magnetic field is tuned near the Feshbach
resonance at 19.8 G, molecules dissociate into free atoms,
which leave the trap.

In state j	i (11:5 G<B< 13:6 G), the behavior of the
molecules is strikingly different. We observe a weaker
background loss of �20% and two pronounced resonances
with a fractional loss of up to 60%. An expanded view in
the inset of Fig. 3 shows that the ‘‘double peak’’ structure
can be well fit by a sum of two Lorentzian profiles. From
the fit, we determine the resonance positions to be 12:72
1�
and 13:15
2� G with full widths of 0.25 and 0.24 G, re-
spectively. Note that due to the levitation gradient field, the
inhomogeneity across the molecular sample is as large as
0.15 G in state j	i, which suggests that the intrinsic widths
of these resonances are less than the observed values.

The observed resonances cannot be explained by single-
molecule effects based on the Cs2 energy structure, which
is precisely known to very high partial waves [9,10].
12 14 16 18 20

0.0

0.5

1.0

12 13 14

0.4

0.8

|β>

 

 

 
re

m
ai

ni
ng

 fr
ac

tio
n

magnetic field (G)

|α>

 

 

FIG. 3. Remaining fraction of optically trapped molecules
after a storage time of 300 ms. Initially, there are 11 000
molecules at a peak density of 6	 1010 cm�3 and a temperature
of 250 nK. The dashed lines mark the background loss rates in
state j�i and in state j	i. The two loss resonances for j	i are fit
by a sum of two Lorentzian profiles (inset).
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Beyond single-molecule effects, the observed resonance
structure strongly suggests that bound states of two Cs2
molecules (Cs4 tetramer states) are tuned in resonance with
the scattering state of the molecules and induce Feshbach-
like couplings to inelastic decay channels. Other possible
scattering processes, e.g., direct coupling to a trimer and an
atom or a dimer and two atoms, should result in a threshold
behavior in the loss spectrum instead of the observed
resonance structure. For Cs2 molecules, the appearance
of Cs4 bound states near the scattering continuum is not
surprising considering the complexity of interaction be-
tween Cs atoms and the additional rotational and vibra-
tional degrees of freedom.

To confirm that the loss is indeed due to collisions
between molecules, we observe the decay of the molecular
population in the CO2-laser trap. Starting with 11 000
molecules prepared at different magnetic fields, we record
the molecule number after various wait times, as shown in
Fig. 4. Three magnetic field values are chosen here: 15.4 G
where the molecules are in state j�i, 12.1 G where the
molecules are in state j	i and are away from the resonance,
and 12.7 G where the molecules are on the strong molecu-
lar resonance; see Fig. 4. The number of trapped molecules
shows a nonexponential decay, which provides a clear
signature of the density-dependent processes.

To further investigate the underlying molecular collision
processes, we model the loss based on a two-body or a
three-body loss equation. Assuming a Gaussian distribu-
tion for the thermal ensemble in a harmonic trap with a
constant temperature and that the collision loss rate is slow
compared to the thermalization rate, we fit the measured
molecule numbers to the two-body and three-body decay
equation; see in Fig. 4. For 15.4 and 12.1 G, we find that the
two-body equation provides excellent fits. The two-body
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FIG. 4 (color online). Time evolution of the molecule number
in the CO2-laser trap for molecules in state j�i at 15.4 G (open
circles), in state j	i at 12.1 G (off resonance, solid circles) and at
12.7 G (on resonance, crosses). Fits based on two-body loss
(dashed lines) work well for 15.4 and 12.1 G. A fit based on
three-body loss (solid line) works better for 12.7 G.
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coefficients are 5	 10�11 cm3=s at 15.4 G and 3	
10�11 cm3=s at 12.1 G. We cannot, however, rule out the
possibility that three-body processes also play a role. The
measured collision rate coefficients are similar to the mea-
surements from the MIT group on Na2 [17], and are an
order of magnitude below the unitarity limit of 2h=mk �
4	 10�10 cm3=s, where k is the characteristic collision
wave number associated with the temperature of the
sample.

At 12.7 G, where the molecules are on the strong reso-
nance, we find that the three-body equation actually pro-
vides a better fit than the two-body fit with a three-body
loss coefficient at 6	 10�20 cm6=s; see Fig. 4. This value,
however, is much too high compared to the three-body
unitarity limit of 96�h=mk4 � 2	 10�23 cm6=s [18].
One alternative explanation is that on resonance, the fast
collision loss rate might leave the molecules insufficient
time to reach thermal equilibrium. By fitting the resonance
data in the first 200 ms with the two-body loss model, we
determine the two-body loss coefficient to be 2	
10�10 cm3=s, which indeed approaches the unitarity limit
of 4	 10�10 cm3=s.

In conclusion, we have observed magnetically tuned
collision resonances in a trapped ultracold sample of Cs2
dimers. The density-dependent inelastic decay and the
resonance structure strongly suggest a resonant coupling
to Cs4 tetramer states. Our observations are reminiscent of
Feshbach resonances in atom-atom scattering. The con-
trolled use of such resonances for interaction tuning and
molecule formation in atomic ensembles has opened up
new avenues in research on ultracold quantum gases. Our
observation of magnetically tuned Feshbach-like reso-
nances in molecule-molecule scattering brings in fascinat-
ing prospects for a controlled synthesis of ultracold
tetramers in a single four-body quantum state in analogy
to the formation of ultracold dimers near atomic Feshbach
resonances. The tunability of the interactions in molecular
quantum gases can potentially open up the door to few-
body physics beyond simple atoms and diatomic molecules
and to a new ultracold chemistry.
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