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Detecting Extra Dimensions with Gravity-Wave Spectroscopy: The Black-String Brane World
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Using the black string between two branes as a model of a brane-world black hole, we compute the
gravity-wave perturbations and identify the features arising from the additional polarizations of the
graviton. The standard four-dimensional gravitational wave signal acquires late-time oscillations due to
massive modes of the graviton. The Fourier transform of these oscillations shows a series of spikes
associated with the masses of the Kaluza-Klein modes, providing in principle a spectroscopic signature of
extra dimensions.
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FIG. 1 (color online). Schematic of the black string.
Black holes are central to our understanding of gravity
and are expected to be key sources of gravity waves that
should be detected by the current and upcoming generation
of experiments. Such a detection will not only confirm the
indirect evidence from binary pulsars for gravity waves but
will also allow us to probe the properties of black holes and
of gravity. In particular, this will open up a new window for
testing modifications to general relativity (GR), such as
those arising from quantum gravity theories. String theory,
for example, predicts that spacetime has extra spatial di-
mensions, so that the gravitational field propagates in
higher dimensions and has extra polarizations. Recent
developments in string theory indicate that standard model
fields may be confined to a four-dimensional ‘‘brane,’’
while gravity propagates in the full ‘‘bulk’’ spacetime.
This has spurred the development of brane-world models,
such as Randall-Sundrum (RS)–type models, which can be
used to explore astrophysical predictions [1]. RS-type
models have a five-dimensional bulk with a negative cos-
mological constant, so that the metric is warped along the
extra dimension. As a result, these models provide a new
approach to the hierarchy problem, dimensional reduction,
and holography.

The nature of black holes that form by gravitational
collapse on an RS brane is only partly understood [1,2],
and no exact solution is known for a black hole localized
on one brane. If there is a second ‘‘shadow’’ brane, the
black string may be used to model large black holes on the
visible brane, when the horizon on the brane is much
greater than the extent of the horizon into the bulk [3].
The black string reproduces the Schwarzschild metric on
the visible brane but is not confined to the brane, since
there is a line singularity at r � 0 into the extra dimension
(see Fig. 1). The shadow brane can also introduce an
infrared cutoff to shut down the Gregory-Laflamme (GL)
instability of the black string at long wavelengths [4]. If the
shadow brane is close enough to the visible brane for a
given black hole mass M, or if M is large enough for a
given brane separation d, then GMe�d=‘=‘ is above a
positive critical value and the GL instability is removed
(see below). This is the background model that we perturb.
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The brane separation is constrained from above by
stability requirements. It is also constrained from below.
This follows since the brane separation is a massless degree
of freedom, felt on the visible brane as a ‘‘radion’’ field, so
that the low-energy effective theory on the visible brane is
of the Brans-Dicke type, with [5] !bd � 3�e2d=‘ � 1�=2,
where ‘ is the bulk curvature radius. The shadow brane
must be far enough away that its gravitational influence on
the visible brane is within observational limits. Solar sys-
tem observations impose the lower limit [6] !bd * 4�
104, so that d=‘ * 5. The allowed region in parameter
space is shown in Fig. 2. Tabletop tests of Newton’s law
impose the constraint ‘ & 0:1 mm. This upper limit de-
fines a mass 0:1 mm=2G� 10�7M�, so that for astrophys-
ical black holes it follows that 2GM � ‘ is easily satisfied:
GM=‘ * 107�M=M��.

The 5D black string is a solution of the Einstein equa-
tions GAB � 6‘�2gAB; with metric

ds2 � a2��fdt2 	 f�1dr2 	 r2d�2� 	 dy2; (1)

where f�r� � 1� 2GM=r, a�y� � e�jyj=‘, and the branes
are at y � 0; d. Metric perturbations satisfy

�hAB 	rArBhCC � 2rCr�AhB�C � 8‘�2hAB � 0; (2)
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FIG. 3 (color online). The s-wave potential for varying ). The
critical potential is indicated by the heavy line. For )<)crit,
there is a bound state with !2 < 0, indicating an instability.

FIG. 2 (color online). The allowed region in parameter space.
The stability boundary is well approximated by GM=‘ �
0:1122ed=‘.
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and gauge choices may be made to reduce the degrees of
freedom to 5, the number of polarizations of the 5D
graviton.

As in standard black hole perturbation theory [7], we use
spherical harmonics Ylm and their gradients to construct a
basis T

�j;lm�
AB for hAB, with j � 1; . . . ; 15. The metric per-

turbation is naturally split into two decoupled parts: polar
[parity ��1�l] and axial [parity ��1�l	1]. Suppressing the
�lm� indices, the expansion coefficients are of the form
C�j� � ei!�H�j��r; y�, where � � t=GM and ! is a dimen-
sionless frequency. We use two gauges, which are related
by quadrature. We generalize the 4D Regge-Wheeler (RW)
gauge by setting the coefficients of the most complicated
harmonic tensors equal to zero, which makes the remaining
coefficients gauge invariant. The RS gauge [5], given by
hAA � 0 � rBhAB � hAy, has the advantage that the ex-
pansion coefficients are separable: C�j� � ei!�W�j��r�Z�y�,
where [4]

a2Z00 � 2�aa0�0Z � �m2Z: (3)

Here, m is the effective mass on the visible brane of the
Kaluza-Klein (KK) mode of the 5D graviton. The bulk
wave functions Z�y� are the same as those for Minkowski
branes (even though the bulk is no longer an anti–de Sitter
bulk), and the solution for m> 0 is Z�y� � B2�m‘=a�,
where B2 is a linear combination of Bessel functions.

Neglecting brane bending, the boundary conditions at
y � 0; d in RS gauge are @y�a�2h !� � 0. When m � 0,
the solution is Z / a2. For this zero mode, the metric
perturbations reduce to those of a 4D Schwarzschild met-
ric, as expected. For m � 0, the boundary conditions lead
to a discrete tower of KK mass eigenvalues,

mn � �zn=‘�e
�d=‘; (4)

where Y1�mn‘�J1�zn� � J1�mn‘�Y1�zn� [1]. The GL insta-
bility exists in the range 0<m<mcrit � 0:4=GM [4]. If
m1 >mcrit, then the instability is avoided, and m1 � mcrit

defines the stability curve in Fig. 2.
12130
Radial master equations.—We generalize the standard
4D analysis to find radial master equations for a reduced
set of variables, for all classes of perturbations. In the 5D
case, the KK modes are governed by coupled master
equations. These can be written as matrix-valued
Schrödinger-like equations,

�
d2

dx2
� 	 V� � !2�; (5)

where V is the potential matrix, x � '	 2 ln�'=2� 1�,
and ' � r=GM. For spherical (s-wave) polar perturba-
tions, there is only one master variable, and

Vs

f
�
)6'9	6)4'7�18)4'6�24)2'4	36)2'3	8

'3�)2'3	2�2
;

(6)

where ) � GMm. For l � 2 axial perturbations, there are
two master variables and the potential matrix in the RW
gauge is

Va

f
� )2I	 '�3 l�l	 1�'� 6 )2

4'3 l�l	 1�'

� �
: (7)

The diagonal elements of Va are identical to the RW
potentials for spin-2 and spin-1 excitations of 4D
Schwarzschild, plus a mass term. Massive KK modes of
the 5D graviton include spin-1 perturbations. (For ) � 0,
the spin-1 contribution is pure gauge.) For the other types
of perturbations, we find that the l � 1 and l � 2 polar
perturbations are governed by two and three master varia-
bles, respectively, while there is only one master variable
for the axial p wave.

Stability.—All master equations can be cast in the form
L�);!�� � 0, where L is a linear differential operator.
Stability holds if L is positive definite when the boundary
conditions � � 0 are imposed at x � �1, and !2 < 0
[7]. We have verified the positivity of L analytically for all
classes of axial perturbation. For the l � 1 polar case we
performed a numerical search for solutions satisfying the
above boundary conditions in the relevant region of �);!�
parameter space. No solutions were found, suggesting that
no instability exists. The opposite is true for the s-wave
2-2
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case. The reason lies in the potential, which is shown in
Fig. 3 for different values of ). For small ), there is a
potential well that can support a normalizable bound state
with !2 < 0, which implies that L is not positive definite.
This well vanishes for large ), suggesting that an insta-
bility exists for all modes with 0<)<)crit. We used a
standard WKB-inspired phase integral analysis [8] to de-
velop a new improved derivation of the GL instability. Our
approach leads to an accurate determination, )crit �
0:4301, in agreement with recent results from full numeri-
cal relativity [9]. Stability is achieved if the mass of the first
KK mode is such that GMm1 >)crit (see Fig. 2).

Gravity-wave signals.—Perturbations of a stable black
string describe gravitational radiation that may in principle
be observable by current or future detectors. The total
gravity-wave signal at the observer (x � xobs) is a super-
position of the waveforms  n��� associated with the mass
eigenvalues mn of Eq. (3). In Fig. 4, we present signals
associated with the four lowest masses for a marginally
stable black string, for l � 2 axial modes. These are ob-
tained by reintroducing time dependence into the
Schrödinger equation (5), via !! �i@=@�, and numeri-
cally integrating the resulting partial differential equation
with V � Va. We assume static Gaussian initial data cen-
tered about x � 50 and an observer at xobs � 100. Because
the master equations reduce to the 4D RW equation when
) � 0, the bottom curve exhibits the damped single-
frequency (quasinormal) ringing followed by a power-
law tail familiar from the 4D analysis [7]. The massive
mode signals are quite different [10], showing much less
damping than the massless mode, and late-time monochro-
matic oscillations instead of a featureless power-law tail.
This is reminiscent of the behavior of massive scalar fields
FIG. 4 (color online). Gravity-wave signals associated with
3 massive KK modes and the 0-mode of l � 2 axial perturba-
tions, for a marginally stable black string. The inset shows the
zero-mode signal on a logarithmic scale.
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in 4D spherically symmetric spacetimes, where a detailed
Green function analysis shows [11] that the late-time signal
is / t�5=6 sinmt, irrespective of l.

To reconstruct the total waveform  tot for the l � 2 axial
case, as measured by an observer on the visible brane, we
need to specify an initial profile F for the perturbation in
the bulk. Using a conformal bulk coordinate - � a�1, and
assuming that F and Zn are appropriately normalized, we
have

 tot��� �
X
n

cnZn�0� n���; cn �
Z ed=‘

1
-FZnd-; (8)

where
P
nc

2
n � 1. Hence, c2n is the fractional energy in the

n mode. Massive KK modes introduce striking new fea-
tures in the gravity-wave signal that are potentially observ-
able, as shown in Fig. 5. The strength of the new features is
sensitive to the initial data F�-�. Here we simply illustrate
the possibilities via two forms of F�-� that correspond to
very different situations.

In Fig. 5, the upper signal has d=‘ � 6 [12], and the
initial data F�-� correspond to the zero mode 1=-2 with a
cutoff applied one-eighth of the distance to the shadow
brane. These data are motivated by the results of numerical
calculations of the bulk gravitational field around a small
brane-localized black hole [2]. If the black hole mass is
small enough to be in the unstable region of Fig. 2, we may
think of the black hole as the endpoint of a GL instability
[2,9]. The initial data are then thought of as arising from an
FIG. 5 (color online). Composite l � 2 axial gravity-wave
signal (normalized) from the 9 lowest mass modes of a margin-
ally stable black string. The upper panel corresponds to ‘‘trun-
cated zero-mode’’ bulk initial data with d=‘ � 6, the lower panel
to Gaussian bulk initial data with d=‘ � 20. The insets show the
Fourier transform of the respective waveforms for 300 � � �
1000. The percentage of energy in the 4D zero-mode part of the
signal is 99.96% (upper panel) and 2:281� 10�13% (lower
panel).
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encounter between this black hole and the much heavier
black string. We find that in this case, the coefficients of the
massive mode signals are of order 10�4, which suggests
that the total waveform will exhibit only minor deviations
from the GR prediction. This is certainly true for early
times, where the signal is dominated by ordinary 4D
Schwarzschild quasinormal ringing (cf. the inset of
Fig. 4). However, as can be inferred from the individual
massive waveforms in Fig. 4, the late-time signal is very
different from the 4D case—it is both oscillatory and very
lightly damped. The inset shows the Fourier transform of
the signal for late times. There are eight discrete peaks in
the spectrum, corresponding to each of the eight nonzero
mass modes.

In the lower panel, we take d=‘ � 20 and Gaussian
initial data in the bulk centered halfway between the branes
(if the center is moved closer to the shadow brane, the
results are qualitatively similar). This could correspond to
an event which ‘‘mainly takes place in the bulk,’’ such as
the merger of two black strings. In this case, the zero-mode
waveform is dominated by the massive mode signals, and
the waveform is very different from the 4D case. The
contributions from the odd modes m3, m5, and m7 are
suppressed, which results in a late-time transform with
five principal peaks in the inset. These peaks, in fact,
display a degree of fine structure, as shown in the blowup,
that deserves further investigation.

Conclusions.—Will the consideration of other types of
perturbations or different multipoles in some way contami-
nate the spectroscopic signal? We find that in all cases, as
r! 1, master variables with ) � 0 behave as massive
fields propagating on Schwarzschild spacetime, which is
enough to guarantee the slowly decaying oscillating tail.
Massless modes for l > 2 are known to be subject to more
damping than for l � 2, so if the massive signal dominates
the latter for late times, it will also dominate the former.

Can the massive signal be resolved by realistic gravity-
wave detectors? There are two separate issues: the fre-
quency of the massive modes and their relative amplitude.
From the formulas above, one finds that the discrete fre-
quencies in the late-time tail are

fn � zne
26:9�d=‘�0:1 mm=‘� Hz: (9)

For d=‘ * 5, zn is well approximated by J1�zn� � 0. Note
that unlike 4D black hole quasinormal modes, these fre-
quencies are independent of the mass M. Taking ‘ �
0:1 mm and d=‘ � 24, results in f1 � 100 Hz, which is
ideal for a Laser Interferometer Gravitational Wave
Observatory detection of extra dimensions. For d=‘ �
33, we find an optimal Laser Interferometer Space
Antenna signal, with f1 � 0:01 Hz. For these parameters,
the lower limits on black-string masses are M> 100M�

and M> 106M�, respectively.
In regard to the amplitudes, the most optimistic type of

events involve bulk-based initial data, i.e., black-string
12130
mergers. Since the zero-mode energy is small in these
situations, we expect the strength of the massive mode
oscillations to be comparable to the quasinormal ringing
amplitude in the analogous 4D case. The situation is more
delicate for brane based initial data, where the zero mode
tends to dominate the signal. We find that the relative
massive amplitude tends to increase with decreasing d=‘.
However, small d=‘ implies large fn, so the best prospect
of seeing this type of signal lies with high frequency
detectors.

The discrete nature of the late-time Fourier transform of
the black-string waveform is the most important observ-
able feature of this model. Its detection would provide
clear evidence of extra dimensions. It would also give the
direct spectroscopic measurement of the KK masses mn,
which in turn provides information about d and ‘.
Although we have analyzed a specific model of brane-
world black holes, we expect that qualitatively similar
features will arise for other models with compact extra
dimensions, since they all have a discrete tower of massive
KK modes. Furthermore, since the massive modes travel
below light speed, there will be potentially an observable
time delay in their arrival, which could be of order seconds
or longer for distant sources. Also, the light damping of KK
modes means that they may have a significant integrated
contribution to the stochastic gravity-wave background.
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