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A detailed simulation of Advanced LIGO test mass optical cavities shows that parametric instabilities
will excite 7 acoustic modes in each fused silica test mass, with parametric gain R up to 7 and only 1
acoustic mode with R� 2 for alternative sapphire test masses. Fine-tuning of the test mass radii of
curvature causes the instabilities to sweep through various modes with R as high as �2000. Sapphire test
mass cavities can be tuned to completely eliminate instabilities using thermal g-factor tuning. In the case
of fused silica test mass, instabilities can be minimized but not eliminated.
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To achieve sufficient sensitivity to detect numerous
predicted sources of gravitational waves, the three long
baseline laser interferometer gravitational-wave detectors
[1–4] need to achieve about 1 order of magnitude im-
proved sensitivity. This improvement is planned to be
achieved using larger lower acoustic loss test masses and
substantially higher laser power [5]. It has already been
pointed out that this improvement brings with it the risk of
parametric instability [6–8]. The instability arises due to
the potential for acoustic normal modes of the test masses
to scatter light from the fundamental optical cavity mode
into a nearby higher order mode, mediated by the radiation
pressure force of the optical modes acting on the acoustic
mode. The instability can occur if two conditions are met.
First, there must be a substantial spatial overlap of the
acoustic mode shape with the higher order cavity mode
shape. Second, the optical frequency difference between
the cavity fundamental mode and higher order mode must
match the acoustic mode frequency.

Parametric instability was observed and controlled in the
niobium bar gravitational-wave detector NIOBE [9]. If not
controlled, instabilities cause acoustic modes to ring at
very large amplitudes, sufficient to disrupt operation of a
sensitive detector.
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We show here that for the proposed Advanced LIGO
(AdvLIGO) parameters, the conditions for instability are
indeed met for a number of acoustic modes, specifically in
the frequency ranges 28–35 kHz and 64–72 kHz. Because
the Young’s modulus and density are smaller for fused
silica than for sapphire, the acoustic mode density of a
fused silica test mass is much greater than that of a sapphire
test mass with the same weight. As a consequence, the
number of parametrically unstable modes is much greater
for fused silica, and they generally have a higher para-
metric gain. After demonstrating the magnitude of the
instabilities, we present a method by which the parametric
instabilities may be detuned. Again, this is more effective
for sapphire than for fused silica because the mode spacing
in the relevant frequency range is about 6 times greater for
sapphire than fused silica. We also show that it is unlikely
to be possible to predesign against the parametric instabil-
ities unless (a) the error of calculating normal mode fre-
quencies in standard finite element modeling (FEM)
software can be improved to less than the cavity bandwidth
(�30 Hz), (b) the test mass density inhomogeneity is
known, and (c) the mirror radius of curvature can be
specified to better than 0.1%.

In an optical cavity, the frequency differences between
the TEM00 mode and TEMmn modes are
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Here !0 is the fundamental mode frequency, !1 is the Stokes mode frequency, !1a is the anti-Stokes mode frequency, L
is the cavity length, R1 and R2 are the mirror radii of curvature, k1 and k1a are longitudinal mode indices, m and n are
transverse mode indices, p � 1 for the Hermite-Gaussian mode, and p � 2 for the Laguerre-Gaussian mode.

By inspection of Eqs. (1a) and (1b), the fundamental modes �m� n � 0� are symmetrically distributed around the
carrier modes and the Stokes mode is compensated by an anti-Stokes mode. Higher order transverse modes �m� n > 0�
are not symmetrically distributed and do not compensate each other.

Braginsky et al. [7] have shown that the effective parametric gain R in a power recycled interferometer is given by
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[In the unusual case that the Stokes mode is within the very
narrow bandwidth (�pr [7]) of the coupled cavity of the
power recycling cavity and arm cavities (�4 Hz for
AdvLIGO nominal parameters), the formula of R will be
different from Eq. (2) [7].] When the parametric gain
exceeds unity, the acoustic mode will be excited. Here P
is the total power inside the cavity, Q1 and Q1a are the
quality factors of the Stokes and anti-Stokes modes, Qm is
the quality factor of acoustic mode, �1�a� � !1�a�=2Q1�a�,
m is the test mass’s mass, L is the cavity length, 	!1�a� �
!0 �!1�a� �!m is the possible detuning from the ideal
resonance case, and �1 and �1a are the overlap factors
between optical and acoustic modes. The overlap factor is
defined as [6]
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Here f0 and f1�a� describe the optical field distribution
over the mirror surface for the fundamental and Stokes
(anti-Stokes) modes, respectively, ~u is the spatial displace-
ment vector for the mechanical mode, uz is the component
of normal to the mirror surface. The integrals

R
d~r? andR

dV correspond to integration over the mirror surface and
the mirror volume V, respectively.

Using FEM (ANSYS ) to calculate mode shapes, we
have evaluated the overlap factors and calculated R for
AdvLIGO test mass [10,11] acoustic modes close to the
first and the second order transverse modes. The test mass
and cavity parameters used are listed in Tables I and II.
This Letter is not to predesign the real situation but to
prove the principle that the error of the FEM has not been
taken into account in the simulation. This assumption will
not affect the final results as it is only the frequency dif-
ference between the acoustic mode and the optical mode
that affects the parametric gain, and we tune the optical
mode frequencies across a 3–5 kHz range. The simulation
for acoustic modes close to cavity transverse modes higher
than second order is not included, because higher order
modes generally have lower parametric gain due to their
diffraction losses. Figure 1(a) shows those modes with R>
1 [12]. Figure 1(b) shows a particular acoustic mode struc-
ture with a frequency (31.251 kHz) close to the frequency
difference between TEM00 and TEM10 modes. Figure 1(c)
shows the TEM10 mode optical field distribution. The
similarity of these mode structures is apparent. The overlap
factor [Eq. (3)] for these two modes is �2:9.
TABLE I. Test mass material parameters [11].

Parameters Sapphire Fused silica

Nominal Q 200� 106 100� 106

Poisson ratio 0.23 0.17
Young’s modulus 4� 1011 N=m2 7� 1010 N=m2

Density 3983 kg=m3 2200 kg=m3

Size (diameter � thickness) 31:4� 13 cm 38:8� 15:4 cm
Test mass’s mass 40 kg 40 kg
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Because of the large acoustic mode density there are 7
acoustic modes which have the potential (R> 1) to be
unstable for a fused silica test mass, compared with only
1 mode for a sapphire test mass. For the nominal AdvLIGO
parameters, the maximum parametric gain R for a fused
silica test mass is up to �7, compared with �2 for a
sapphire test mass.

It is possible that the parametric gain could be much
larger than the values mentioned above for several reasons:
(a) Standard FEM methods for calculating the acoustic
mode frequencies have errors much larger than the cavity
bandwidth [7]. (b) The suspension system may change
acoustic mode frequencies. (c) An error of 2 m (0.1%) in
the mirror radius of curvature results in a cavity mode
spacing error of �30 Hz which is equal to the cavity
bandwidth. Finally, the thermal expansion of the high
reflective coating surface due to the coating absorption
[10,13] (as well as some small bulk absorption contribu-
tion) causes the radii of curvature of test masses to vary
from their nominal values. Thus the worst case, where the
acoustic mode frequency is very close to the frequency
difference between the fundamental mode and a high order
transverse mode, cannot be definitely avoided. For in-
stance, in a fused silica test mass, if the acoustic mode at
the frequency of 33.354 kHz [the third dot from the top in
Fig. 1(a)] has a 459 Hz error, the parametric gain R could
be as large as �2000.

The fact that the cavity mode spacing changes with the
mirror radius of curvature [see Eq. (1)] also provides an
opportunity to tune out the most unstable acoustic modes.
Lawrence et al. [14] and Degallaix et al. [15] have dem-
onstrated that by using a heating ring near the front of the
test mass one can adjust the test mass radius of curvature to
effectively compensate for thermal lensing. The German-
British Collaboration for the Detection of Gravitational
Waves (GEO 600) project [16] has used this method to
compensate the mismatch of radii of curvature of two
interferometer mirrors. Here we propose a similar method,
with the heating ring at the back of the test mass to tune the
cavity mode frequencies. Substantial changes in the radius
of curvature can be achieved. Figure 2 shows the AdvLIGO
end test mass radius of curvature and the relative R,
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as a function of the maximum temperature difference
across the test mass when heated by a heating ring with
variable heating power. Here we assume that there exists
only a single acoustic mode with a frequency equal to the
frequency difference between the fundamental mode and
the first high order mode when without heating. The
change of the radius of curvature from �2:076 to
�2:066 km corresponds to the maximum temperature dif-
ference across the test mass from 0 to �0:11 K for sapphire
(average mirror temperature changed from 300 to
�302:5 K) and from 0 to �1:2 K for fused silica (average
2-2



TABLE II. Cavity parameters [10].

Parameters Sapphire Fused silica

Cavity length 4 km 4 km
Laser wavelength 1064 nm 1064 nm
Radius of curvature 2.076 km 2.076 km
Cavity g factor g1 � g2 � �0:9265 g1 � g2 � �0:9265
�1=2��m� p  n � 0; 1; 2� 15 Hz 15 Hz
�1a=2��m� p  n � 6� 191 Hz 191 Hz
�1a=2��m� p  n � 7� 535 Hz 535 Hz
Power recycling mirror transmission 6% 6%
Laser power inside arm cavities 830 kW 830 kW
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mirror temperature changed from 300 to �301 K). If one
considers only a single acoustic mode, this tuning is suffi-
cient to reduce R to 1% of its original value. Unfortunately,
there are many potential acoustic modes. When tuning the
cavity modes away from a particular acoustic mode, we
generally increase the coupling to nearby acoustic modes.
In sapphire test masses, the frequency gap is �1 kHz.
Tuning the cavity mode to a point between two acoustic
modes minimizes the parametric gain of both. The acoustic
mode gap of �200 Hz for fused silica test masses makes
such tuning much less effective. Thus we see that in fused
silica [Fig. 3(b)] it is impossible to tune the parametric gain
R to less than 2. In sapphire [Fig. 3(a)] it is possible to tune
the cavity away from the instabilities (R< 1) at the radius
of curvature around 2.092 km. Figure 4 shows the total
numbers of acoustic modes whose parametric gains R are
greater than 1 as a function of mirror radius curvature for
sapphire and fused silica, respectively. The optimum tun-
ing of fused silica leads to 2 modes with R of 1.5 and 2.5
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FIG. 1 (color online). (a) All the acoustic modes with R> 1
for sapphire (square) and fused silica (diamond), respectively,
assuming nominal AdvLIGO parameters [10,11]. (b) A typical
test mass acoustic mode structure. (c) The field distribution of
the cavity TEM10 mode showing high overlap of the acoustic and
optical mode structures.
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when the radius curvature increased to 2.135 km. In sap-
phire there are no modes with R greater than 1 at the
optimum tuning point corresponding to about 2.092 and
2.127 km radius of curvature.

Tuning the arm cavity radius of curvature also changes
the TEM00 mode waist size and may mismatch the arm
cavity with the recycling cavities. Over modest tuning
ranges, this effect is small. For example, when the radius
of curvature of the AdvLIGO end test mass changes from
2.076 to 2.066 km, the arm cavity beam waist changes from
1.15 to 1.13 cm. The introduced loss due to the mode
mismatching is �300 ppm which is acceptable in relation
to the recycling mirror transmission (6% for the power
recycling mirror and 7% for the signal recycling mirror).

In summary, it is inevitable that parametric instabilities
will appear in AdvLIGO. By thermally tuning the arm
cavity mirror radius of curvature we can tune the cavity
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FIG. 2. The dependence of the relative parametric gain R
(dotted line) and the mirror radius of curvature (solid line) on
the maximum temperature difference across the test mass if
considering only one acoustic mode, (a) for sapphire and
(b) for fused silica.
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FIG. 3 (color online). The maximum parametric gain R of all
acoustic modes as a function of mirror radius of curvature, (a) for
sapphire and (b) for fused silica.
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away from instability in the case of sapphire test masses or
minimize the instability gain in the case of fused silica test
masses. Thermal tuning is feasible and need not introduce
extra noise. While the data have been applied to AdvLIGO
parameters, it is also directly relevant to the VIRGO
interferometer.

We note that the instabilities discussed here refer to
single cylindrical test masses. Each test mass will experi-
ence instability, and for noncylindrical symmetry there will
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FIG. 4 (color online). The numbers of acoustic modes with
R> 1 when tuning the radius of curvature for (a) sapphire and
(b) fused silica.
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be twice as many acoustic modes. The optimum tuning for
suspended pairs of test masses requires further study.
Braginsky et al. [17] has proposed the use of small but
high finesse detuned cavities as a means of low noise
‘‘tranquilizing’’ of parametric instabilities. The extra cavi-
ties needed in the scheme create extra complexity into an
already complex system. Feedback schemes similar to the
demonstrated cold damping of thermal noise [18] could be
another solution, again adding complexity.

A similar analysis for the Gingin High Optical Power
Facility shows that this facility is ideally suited for experi-
mental study of parametric instability. Results will be
presented elsewhere.

This is a project of Australian Consortium for
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