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Coexistence of Black Holes and a Long-Range Scalar Field in Cosmology
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The exactly solvable scalar hairy black hole model (originated from the modern high-energy theory) is
proposed. It turns out that the existence of black holes is strongly correlated to global scalar field, in a
sense that they mutually impose bounds upon their physical parameters like the black hole mass (lower
bound) or the cosmological constant (upper bound). We consider the same model also as a cosmological
one and show that it agrees with recent experimental data; additionally, it provides a unified quintessence-

like description of dark energy and dark matter.
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Two of the most fundamental predictions of the modern
high-energy theory and gravity are black holes (BH’s) and
cosmological scalar field (SF). However, if the existence of
BH’s has been experimentally confirmed since the 1970s
(and we even know now that BH’s exist in the centers of
many galaxies including ours) then the global SF still lacks
for direct experimental evidence, mostly due to its ex-
tremely weak interaction with other matter. In view of
this, here we demonstrate that a good way to proceed is
to search for the influence the SF exerts on the first of the
two phenomena we are considering here, black holes.

If one expects that the global ubiquitous scalar field does
exist such that everything, including black holes, is “float-
ing” inside it, then one must allow the field to get arbi-
trarily close to the surface of every black hole which exists
in the Universe at this moment. Moreover, to keep things
physically consistent, when constructing models one must
require that SF must be regular in the arbitrarily close
vicinity of the event horizon. This requirement, which at
first appeared so innocent, in practice gave rise to enor-
mous technical difficulties. In fact, beginning in the 1960s
and until recently, nobody has succeeded in satisfying it,
i.e., in finding the regular configurations of noncharged
black holes and SF, the so-called scalar black holes (SBH).
By the latter one assumes the solution which is (i) pos-
sessing an event horizon, (ii) physically acceptable (i.e.,
both the spacetime and SF must be regular on and outside
the horizon and have standard spherical topology and finite
physical characteristics like mass, energy density, etc.; also
the nonminimal coupling, if any, must obey the recent
observational bounds [1]), and (iii) not reducible to any
other BH existing in the absence of SE. All these require-
ments have not yet been fulfilled, despite the tremendous
efforts and certain encouraging results [2,3]; see Ref. [4]
for the most recent state of the art. The models proposed so
far either have unphysical features, such as irregularities or
exotic topology, or they involve additional gauge fields,
and then it becomes unclear why all BH’s should have
noncompensated gauge charges to be consistent with
global SF. Even the numerical results are rare [5—7]. Not
without a sense of irony, people happened to be much more
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successful in solving the opposite task: finding the require-
ments under which the physically admissible SBH cannot
exist, known as the scalar “‘no-hair”’ theorems [8], origi-
nated from Wheeler’s conjecture that a BH cannot be
characterized by any parameters other than mass, electric
charge, and angular moment [9]. On the contrary, here we
are going to solve this long-standing problem: we present
the model which completely satisfies the above-mentioned
SBH criteria and thus ultimately falsifies the conjecture.
The model.—We use the units where 167G = ¢ = 1,
where G is the Newton constant, and consider theory
describing self-interacting scalar field ¢ minimally
coupled to Einstein gravity. Its Lagrangian is £ ~ R —
(1/2)(0¢)*> — V(¢), where the SF potential is given by

V =2A(cosh¢ +2) + 4 x(3sinh¢ — ¢(coshg +2)), (1)

where y and A are parameters of the model; A is usually
called the cosmological constant. The model has the static
spherically symmetric solution given in static observer
coordinates {z, r, 6, ¢} by

d 2
dS2 — _N2dt2 + _7”2 + Rz(dﬁz + Sin20d¢2);
N (2)
e =H,

where H = 1 + «/r? is a harmonic function, with d = 1
in our case, N> =1 —2x[«(r + x/2) — R>InH] — AR?
with R = \/r(r + k) being the habitual radius and « being
the integration constant. The solution was obtained using
the separability approach [10,11]. The model also admits
another solution which can be deduced from (2) by the
simultaneous inversion {¢p — —¢, y — — x} because our
initial Lagrangian has such Z, symmetry. In other words,
these two solutions can be grouped into a sort of duplet
whose components are characterized by the discrete
“charge” Q = ¢ /|| = *1. For brevity, here we work
only with the solution we started from, corresponding to
Q = 1. To clear its physical meaning, let us expand N? in
series assuming R/k o r/k > 1 that gives the Newtonian

limit. We get N?o1— AR: =24 4 X< 4 O(1/R%),,

where we have identified M = yx*/6 as a gravitating
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mass of (2). Thus, depending on whether A is zero, posi-
tive, or negative, our solution is asymptotically flat,
de Sitter (dS), or anti—de Sitter (AdS). Note that the
solution cannot be reduced to the Schwarzschild one as
the limit where SF vanishes corresponds to the de Sitter
spacetime.

Further, both SF and curvature invariants become sin-
gular at R; = 0; therefore, we may have problems with the
Cosmic Censor unless the spacetime has the event horizon
located somewhere at R;, = \/r,(r, + k) > R, thus
“dressing” the (otherwise naked) singularity. The horizon
condition is N?(r,) = 0, and its graphical solution is
shown in Fig. 1(a) where we have defined y =
1 — (yx?)~! # 1. From there one can deduce a few im-
portant things. First, (2) does describe SBH though not for
every y and « but only for those obeying the inequality

0<y<l 3)

Second, there exists an upper bound for A: the cosmologi-

0.2 X

(47 Th)x

FIG. 1. (a) Graphical solution of the horizon equation. The
intersections of curves with horizontal lines Ax? yield the radii
of horizons. Cases: y = 0 (short-dashed curve, plotted at y=
—0.1); y>1 (long-dashed curve, plotted at y = 1.1); 0<y <1
(solid curve, plotted at y = 0.8) where the dotted horizontal line
is A = A.. In all cases we have at least one horizon (the
cosmological one) but only in the third case we have the second,
event, horizon. (b) Radius, mass, and temperature (here we
assume A being negligibly small). The solid and dashed curves
correspond, respectively, to the radius R, and mass M as
functions of 7y; the dotted curve shows Hawking temperature
Ty as a function of M.

cal constant must be below a certain critical value A_;
otherwise no black hole can exist. Moreover, its absolute
value must be much smaller than A, to have the radius of a
black hole much less than the size of the observable
Universe: A < A, = 4K72(% — 1) Rough estimates
give /A, ~ Ry /Ry, = 10728 if for a maximal value of
Rpy we take that of the central-galactic BH’s having mass
=< 10°M,,. Thus, we see that the global parameter, cosmo-
logical constant, turns out to be correlated with local
quantities such as the size of SBH or its mass. Third,
from (3) one can directly derive that the previously defined
mass of SBH M is bounded from below: M = M., =
M|,y = k/6; also 7y can be rewritten as 1 — My, /M.
This property causes SBH to drastically differ from the
common BH solutions such as the Schwarzschild one
where the lower bound is zero. Fourth, (3) also gives the
bounds for y and k: y = x~2 > 0. The joint plot of the
most important local characteristics of our SBH (horizon
radius, mass, and Hawking temperature) is given in
Fig. 1(b). One can clearly see that when the horizon radius
R,, approaches zero the mass takes a nonzero value.

Finally, one should not forget that in the presence of SF
the Schwarzschild solution cannot be regarded as a real-
istic one because the true vacuum (with vanishing stress-
energy tensor T',,,) must be replaced by the SF background
with T, = 0,09,¢ — £,,[(1/2)(04)* + V(¢)]. In
other words, the solutions such as (2) should be regarded
as describing the actual exterior gravitational field of mas-
sive bodies in “‘vacuum.”

BH-compatible cosmology.—As long as we assume our
SF being global and fundamental we must study the cos-
mological consequences the model (1) implies. The po-
tential (1) consists of the symmetric and antisymmetric
parts with respect to the inversion of ¢, proportional to A
and Y, respectively. At small ¢ and nonzero cosmologi-
cal constant A the symmetric part dominates: V(¢ — 0) o
6A(1 + ¢2/6) + O(¢*), whereas for large values of the
field it is the antisymmetric part that brings the main
contribution: V(¢ — *£00) « —2y¢ exp|g|. Following
the standard procedure adopted in cosmology we consider
SF as a homogenous and isotropic function of cosmologi-
cal time, ¢(f), and conduct numerical simulations for our
model at different values of its parameters. They showed
that the following scenarios of the spatially flat Freedman-
Robertson-Walker (FRW) Universe evolution are possible.

In the mainstream cosmological scenario with positive
A, our SF (inflaton) starts at ¢¢ << —1, rolls down towards
the local dS minimum of the potential, passes it, and tries
to climb over the local dS maximum. If its initial energy is
not sufficient to do that (note that the inflaton’s motion is
not “frictionless”: there exists sufficient dissipation of
energy for the creation of radiation and matter), then we
have scenario A: the inflaton rolls back to the local mini-
mum asymptotically approaching the value ¢ = 0, as in
Fig. 2(b). Meanwhile, the Universe experiences an accel-
erated expansion [see Fig. 2(b)] with the eternal accelera-
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tion [Fig. 2(c)]. The ratio of the SF density (dark energy) to
the total energy density approaches the approximate value
0.72 [Fig. 2(d)]. Figure 2(f) reveals the quintessencelike
[12] behavior of SF: during some epoch in the past (or,
equivalently, in “‘redshifted” regions) it behaved like a
pressureless matter (wy, = py /p o ~ 0), but afterwards its
effective equation of state became of the false vacuum-type
(wg — wpg = —1). Thus, the model provides a unified
description of dark energy and dark matter without ad hoc
assumptions—they appear to be different manifestations
of the same entity, scalar field. All these results agree with
the recent experimental data coming from high-redshift
observations of supernovae [13—15] and anistropies of
the cosmic microwave background spectrum [16—19].

In another case, when the initial energy of SF is suffi-
cient to overcome the local maximum (classically or by
virtue of the tunnelling effect), we have scenario B: the
scalar field rolls over the maximum and starts moving all
the way down [Fig. 3(b)], whereas the Universe at some
point begins to decelerate [Fig. 3(d)] and eventually col-
lapses to the Big Crunch [Fig. 3(c)], even despite being
spatially flat. Figure 3(e) shows that this scenario is in
agreement with experiment, too. Thus, one may wonder
which scenario is the real one, A (ever-expanding
Universe) or B (Big Crunch)? So far we do not know as
we do not know the recent value of SF and its rate of
change which are related to the initial ones. The fate of our
Universe crucially depends on them.

In principle, the presented scenarios are sufficient to
show the viability of the cosmological model based on
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FIG. 2. Cosmological scenario A. For all plots except (a) the
horizontal axis is the time measured in units H, I ~15%x10° yr,
and zero corresponds to today. The numerical input data: ID =
{A/pes X/ per Plimg, [/ dT),—o} = {0.12,0.12, 1072, 0}, where
pe~ 1072 gcm™3 is the critical density. We plot (b) the evo-
lution of SF, (c) the evolution of the size of the Universe, (d) the
deceleration parameter ¢ = —adi/d?, (e) the dark energy ratio
P/ Pio» and () the effective equation of state for SF p,/p .

Eq. (1). Yet, we consider also another possibility—when
A is not necessarily positive. The reason is that many
people associate the accelerated expansion of the
Universe with a positive cosmological constant and the
regime where the scalar field approaches the dS vacuum
state. Let us demonstrate how this stereotype gets broken in
our model. By numerical simulations one can easily show
that the accelerated expansion of the Universe may occur
not only when A >0 but also at A =0, when no dS
extrema exist. Let us consider the case A = 0 only, because
the case of a negative cosmological constant (AdS) is very
similar qualitatively. In this case the potential has a saddle
point at ¢ = 0 instead of two local extrema; see Fig. 4(a).
One can imagine the following two scenarios. The first
takes place when the initial value of SF is a large negative
such that initially it “sits uphill” and starts unbounded
motion all the way down, as time goes. The second one
happens when initially ¢ is situated “downhill’’ (such that
it is a large positive) but its initial kinetic energy is large
enough to climb up. Then it moves up, passes the saddle
point, continues an ascent until it reaches the maximum
point of its trajectory, and then rolls back all the way down;
see Fig. 4(b). The accelerated expansion of the Universe
takes place in both cases. However, in the first case the
inflation ends too soon such that one could not detect any
acceleration nowadays; neither the dark energy approaches
its experimentally established value today. The second
scenario is better in this connection: the Universe passes
a certain epoch of accelerated expansion whose time can be
tuned to coincide with today [Fig. 4(d)]. Thereby the size
of the Universe evolves with time as in Fig. 4(c): decel-
erated expansion, accelerated expansion, again decelerated
expansion, shrinking, and finally, the Big Crunch. The
recent value of Q¢ agrees with experiment [Fig. 4(e)].
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FIG. 3. Cosmological scenario B. The notations are the same
as in Fig. 2; ID = {0.08, 0.08, 2, 0.2}.
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FIG. 4. A scenario with A = 0. ID = {0, 10.3, —1, 0}.

To summarize, our BH-compatible cosmological model
(1) seems to be compatible with the experimental data for a
large range of its parameters. Besides, above our model has
been explicitly proven to be consistent with the existence of
black holes in the Universe. The class of such models
cannot be vast a priori because the scalar no-hair theorems
forbid the appearance of black holes for a large set of the
SF potentials, e.g., convex or positive semidefinite [20,21].
Thus, the existence of BH’s can be the strong criterion for
theoretical cosmology sufficiently narrowing the class of
physically admissible models.

Origin of the model.—The potential (1) appears in the
novel class of the four-dimensional (4D) effective field
theories (EFT) which describe the low-energy limit of
the 11D M-theory taking into account the nonperturbative
aspects such as BPS states and p-branes [22]. The scalar
potential in those EFT’s in the simplest case satisfies the
second order differential equation: V" —(a+a )X
coth[(a + a )¢ /4]V' + V =0, where the constant a is
precisely the one that appears in the truncated supergravity
(SUGRA), L ~ R — (1/2)(a¢)> — (1/2n!)ea¢F[2n] + -
The potential (1) arises as a solution of this ordinary
differential equation at a> = 1 (other potentially super-
symmetric cases a> = 3, 1/3 also have been studied by
the author but are not listed here). Considering those EFT’s
goes far beyond the scope of this Letter; instead we just
briefly outline some common features of our model and
SUGRAs. For instance, the structure of the solution (2)
looks very similar to that of O-branes [23,24]. The
Breitenlohner-Freedman parameter [25] takes the confor-
mal value u?> = —2> —9/4, thus the model’s stability
can be enhanced by partially unbroken supersymmetry.
Further, the symmetric A part of our potential resembles
those arising in SUGRA-inspired cosmologies [7,26,27];
however, our model also has the antisymmetric y part

which is responsible for black holes (and at the same
time for cosmological behavior at large values of SF).
Besides, the y part is appreciated by string theory and
quantum field theory in curved spacetime because of cer-
tain conceptual difficulties with the ever-accelerating dS
Universe [28,29]. From the quantum viewpoint, even in
scenario A the local (dS) minimum is a quasibound state
and thus the system can stay there only for a finite time—
eventually it tunnels through the local maximum, such that
its further dynamics will follow scenario B.

I thank D. Sudarsky, A. Giiijosa, M. Salgado, and
C. Chryssomalakos for enlightening discussions.
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